时间信息的贝叶斯优化知觉*

陈有国, 彭春花, 刘培朵, 余婕

心理科学 ›› 2024, Vol. 47 ›› Issue (1) : 11-20.

PDF(2712 KB)
中文  |  English
PDF(2712 KB)
心理科学 ›› 2024, Vol. 47 ›› Issue (1) : 11-20. DOI: 10.16719/j.cnki.1671-6981.20240102
基础、实验与工效

时间信息的贝叶斯优化知觉*

  • 陈有国**1,2, 彭春花3, 刘培朵1,2, 余婕1,2
作者信息 +

Bayes-Optimal Perception of Temporal Information

  • Chen Youguo1,2, Peng Chunhua3, Liu Peiduo1,2, Yu Jie1,2
Author information +
文章历史 +

摘要

大脑运用贝叶斯推理加工时间信息形成优化知觉。贝叶斯模型在趋中效应、多源时间信息整合、时空干扰效应以及同时性的贝叶斯校准这四个课题上取得了较大的进展。本文在测量-估计-决策三阶段模型的框架下,对以上课题中的贝叶斯模型进行分析。未来需检验不同形式的时间信息先验的合理性,厘清似然性的心理表征,探明时间信息贝叶斯估计的神经基础。应该结合时间信息加工模型与贝叶斯模型的优势,为时间信息加工的认知神经机制研究提供新的思路。

Abstract

The Bayesian theory is widely used in cognitive science. Previous studies have proven that Bayesian inferences cause many illusions in temporal cognition. From the perspective of Bayesian inference, we analyzed the processing mechanism of the central tendency effect, integration of multisource temporal information, spatiotemporal interference effect, and Bayesian calibration of simultaneity. This study has crucial implications for research on temporal information processing; additionally, it helps other researchers in cognitive science to understand the basic methods of modeling mental processes using the Bayesian theory.
Temporal information processing is reinterpreted using a Bayesian model. The clock, reference memory, working memory, and decision-making in the temporal information processing model were analogized with the likelihood, prior, posterior, and loss functions of Bayesian inference. The central tendency effect is known as the Vierordt’s law, in which participants underestimate long time intervals and overestimate short time intervals in various time intervals. A three-stage Bayesian model is constructed to explain the mechanism of the central tendency effect. In daily life, the integration of multiple sources of temporal information is necessary. The maximum likelihood estimation model proposes that the brain uses Bayes’ rule to integrate temporal information from different sources, reducing uncertainty and increasing estimation reliability. The causal inference model uses a hierarchical Bayesian model to determine whether different temporal information originate from the same source or different sources. The spatiotemporal interference effect involves the mutual interference between spatial and temporal information, among which the Kappa effect has significantly progressed. The Kappa effect is a spatiotemporal illusion in which the irrelevant distance between the stimuli systematically distorts the perception of elapsed time between sensory stimuli. An algebraic model assumes that the perceived interstimulus time is a weighted average of actual and expected times, calculated as a ratio of known distance and velocity. This algebraic model was rewritten as a Bayesian model with a constant-speed hypothesis. A logarithmic constant-velocity model was proposed by integrating the Weber-Fechner law with an algebraic model. The logarithmic constant-velocity model considers that the deceleration tendency of the Kappa effect is driven by the Weber-Fechner law. The fitness of the logarithmic model for the Kappa effect behavior data is better than that of the original constant-velocity model. Additionally, priors influence the simultaneity of temporal order perception. During the temporal-order judgment task, participants learned the statistical distribution of temporal-order information as a prior. The prior and likelihood of the temporal-order information are then integrated using the Bayes’ rule, which is similar to the central tendency effect.
Future research on Bayes-optimal perception of temporal information should answer the following questions. (1) To test the rationality of the prior proposed in previous studies, neuroscience should incorporate the Bayesian model to test priors using electrophysiological evidence. (2) To clarify the mental representation of the likelihood of temporal information, neural activity in the dorsolateral striatum is associated with objective temporal coding. Neural activity can be measured to decode the likelihood of temporal information and to clarify whether the likelihood of temporal information has a normal or lognormal distribution. (3) To identify the neural basis of the Bayesian estimation of temporal information, further evidence is needed to identify whether temporal Bayesian estimation is specific to the parietal cortex or involves a larger neural network. The advantages of the temporal information processing and Bayesian models should be combined to provide new ideas for research on the cognitive and neural mechanisms of temporal information processing.

关键词

时间信息 / 贝叶斯推理 / 趋中效应 / 时间信息整合 / 时空干扰效应 / 同时性的贝叶斯校准

Key words

temporal information / Bayesian inference / central tendency effect / temporal information integration / spatiotemporal interference effect / Bayesian calibration of simultaneity

引用本文

导出引用
陈有国, 彭春花, 刘培朵, 余婕. 时间信息的贝叶斯优化知觉*[J]. 心理科学. 2024, 47(1): 11-20 https://doi.org/10.16719/j.cnki.1671-6981.20240102
Chen Youguo, Peng Chunhua, Liu Peiduo, Yu Jie. Bayes-Optimal Perception of Temporal Information[J]. Journal of Psychological Science. 2024, 47(1): 11-20 https://doi.org/10.16719/j.cnki.1671-6981.20240102

参考文献

[1] Acerbi L., Wolpert D. M., & Vijayakumar S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology, 8(11), Article e1002771.
[2] Adams, W. J. (2016). The development of audio-visual integration for temporal judgements. PLoS Computational Biology, 12(4), Article e1004865.
[3] Billock, V. A., & Tsou, B. H. (2011). To honor Fechner and obey Stevens: Relationships between psychophysical and neural nonlinearities. Psychological Bulletin, 137(1), 1-18.
[4] Brock, J. (2012). Alternative Bayesian accounts of autistic perception: Comment on Pellicano and Burr. Trends in Cognitive Sciences, 16(12), 573-574.
[5] Burr D., Della Rocca E., & Morrone M. C. (2013). Contextual effects in interval-duration judgements in vision, audition and touch. Experimental Brain Research, 230(1), 87-98.
[6] Casassus M., Poliakoff E., Gowen E., Poole D., & Jones L. A. (2019). Time perception and autistic spectrum condition: A systematic review. Autism Research, 12(10), 1440-1462.
[7] Chang, C. J., & Jazayeri, M. (2018). Integration of speed and time for estimating time to contact. Proceedings of the National Academy of Sciences, 115(12), E2879-E2887.
[8] Chen L. H., Zhou X. L., Müller H. J., & Shi Z. H. (2018). What you see depends on what you hear: Temporal averaging and crossmodal integration. Journal of Experimental Psychology: General, 147(12), 1851-1864.
[9] Chen Y. G., Peng C. H., & Avitt A. (2021). A unifying Bayesian framework accounting for spatiotemporal interferences with a deceleration tendency. Vision Research, 187, 66-74.
[10] Chen Y. G., Zhang B. W., & Körding K. P. (2016). Speed constancy or only slowness: What drives the Kappa effect. PLoS ONE, 11(4), Article e0154013.
[11] Cicchini G. M., Arrighi R., Cecchetti L., Giusti M., & Burr D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056-1060.
[12] Cohen J., Hansel C. E. M., & Sylvester J. D. (1953). A new phenomenon in time judgment. Nature, 172(4385), Article 901.
[13] Cui M. H., Peng C. H., Huang M., & Chen Y. G. (2022). Electrophysiological evidence for a common magnitude representation of spatiotemporal information in working memory. Cerebral Cortex, 32(18), 4068-4079.
[14] Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11(12), 504-513.
[15] Elliott M. T., Wing A. M., & Welchman A. E. (2014). Moving in time: Bayesian causal inference explains movement coordination to auditory beats. Proceedings of the Royal Society B: Biological Sciences, 281(1786), Article 20140751.
[16] Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433.
[17] Gibbon, J. (1977). Scalar expectancy theory and Weber' s law in animal timing. Psychological Review, 84(3), 279-325.
[18] Gori M., Chilosi A., Forli F., & Burr D. (2017). Audio-visual temporal perception in children with restored hearing. Neuropsychologia, 99, 350-359.
[19] Griffiths, T. L., & Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: General, 140(4), 725-743.
[20] Gu B. M., Jurkowski A. J., Shi Z. H., & Meck W. H. (2016). Bayesian optimization of interval timing and biases in temporal memory as a function of temporal context, feedback, and dopamine levels in young, aged, and Parkinson' s disease patients. Timing and Time Perception, 4(4), 315-342.
[21] Hallez Q., Damsma A., Rhodes D., van Rijn H., & Droit-Volet S. (2019). The dynamic effect of context on interval timing in children and adults. Acta Psychologica, 192, 87-93.
[22] Hayashi, M. J., & Ivry, R. B. (2020). Duration selectivity in right parietal cortex reflects the subjective experience of time. Journal of Neuroscience, 40(40), 7749-7758.
[23] Helson, H. (1930). The tau effect—An example of psychological relativity. Science, 71(1847), 536-537.
[24] Ide M., Yaguchi A., Sano M., Fukatsu R., & Wada M. (2019). Higher tactile temporal resolution as a basis of hypersensitivity in individuals with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(1), 44-53.
[25] Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13(8), 1020-1026.
[26] Jazayeri, M., & Shadlen, M. N. (2015). A neural mechanism for sensing and reproducing a time interval. Current Biology, 25(20), 2599-2609.
[27] Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91(1), 128-142.
[28] Karaminis T., Cicchini G. M., Neil L., Cappagli G., Aagten-Murphy D., Burr D., & Pellicano E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, Article 28570.
[29] Kopp B., Seer C., Lange F., Kluytmans A., Kolossa A., Fingscheidt T., & Hoijtink H. (2016). P300 amplitude variations, prior probabilities, and likelihoods: A Bayesian ERP study. Cognitive, Affective and Behavioral Neuroscience, 16(5), 911-928.
[30] Körding K. P., Beierholm U., Ma W. J., Quartz S., Tenenbaum J. B., & Shams L. (2007). Causal inference in multisensory perception. PLoS ONE, 2(9), Article e943.
[31] Miyazaki M., Yamamoto S., Uchida S., & Kitazawa S. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment. Nature Neuroscience, 9(7), 875-877.
[32] Narain D., Remington E. D., Zeeuw C. I. D., & Jazayeri M. (2018). A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 9(1), Article 469.
[33] Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
[34] Pérez, O., & Merchant, H. (2018). The synaptic properties of cells define the hallmarks of interval timing in a recurrent neural network. Journal of Neuroscience, 38(17), 4186-4199.
[35] Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. Journal of Neuroscience, 31(47), 17220-17229.
[36] Petzschner F. H., Glasauer S., & Stephan K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293.
[37] Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56-61.
[38] Pouget A., Beck J. M., Ma W. J., & Latham P. E. (2013). Probabilistic brains: Knowns and unknowns. Nature Neuroscience, 16(9), 1170-1178.
[39] Rescorla, M. (2021). Bayesian modeling of the mind: From norms to neurons. WIREs Cognitive Science, 12(1), Article e1540.
[40] Roach N. W., McGraw P. V., Whitaker D. J., & Heron J. (2017). Generalization of prior information for rapid Bayesian time estimation. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 412-417.
[41] Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive Sciences, 14(9), 425-432.
[42] Shi Z. H., Church R. M., & Meck W. H. (2013). Bayesian optimization of time perception. Trends in Cognitive Sciences, 17(11), 556-564.
[43] Toso A., Reinartz S., Pulecchi F., & Diamond M. E. (2021). Time coding in rat dorsolateral striatum. Neuron, 109(22), 3663-3673.
[44] Wada M., Umesawa Y., Sano M., Tajima S., Kumagaya S., & Miyazaki M. (2023). Weakened Bayesian calibration for tactile temporal order judgment in individuals with higher autistic traits. Journal of Autism and Developmental Disorders, 53(1), 378-389.
[45] Walker E. Y., Cotton R. J., Ma W. J., & Tolias A. S. (2020). A neural basis of probabilistic computation in visual cortex. Nature Neuroscience, 23(1), 122-129.
[46] Wing A. M., Doumas M., & Welchman A. E. (2010). Combining multisensory temporal information for movement synchronisation. Experimental Brain Research, 200(3-4), 277-282.
[47] Yoshimatsu, H., & Yotsumoto, Y. (2021). Weighted integration of duration information across visual and auditory modality is influenced by modality-specific attention. Frontiers in Human Neuroscience, 15, Article 725449.
[48] Zhang, H. H., & Zhou, X. L. (2017). Supramodal representation of temporal priors calibrates interval timing. Journal of Neurophysiology, 118(2), 1244-1256.
[49] Zhang, L. Q., & Stocker, A. A. (2022). Prior expectations in visual speed perception predict encoding characteristics of neurons in area MT. Journal of Neuroscience, 42(14), 2951-2962.
[50] Zhou H. Y., Cai X. L., Weigl M., Bang P., Cheung E. F. C., & Chan, R. C. K. (2018). Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 86, 66-76.

基金

*本研究得到教育部人文社会科学研究青年基金项目(19YJC190002)和重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0758)的资助

PDF(2712 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/