[1] Acerbi L., Wolpert D. M., & Vijayakumar S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology, 8(11), Article e1002771. [2] Adams, W. J. (2016). The development of audio-visual integration for temporal judgements. PLoS Computational Biology, 12(4), Article e1004865. [3] Billock, V. A., & Tsou, B. H. (2011). To honor Fechner and obey Stevens: Relationships between psychophysical and neural nonlinearities. Psychological Bulletin, 137(1), 1-18. [4] Brock, J. (2012). Alternative Bayesian accounts of autistic perception: Comment on Pellicano and Burr. Trends in Cognitive Sciences, 16(12), 573-574. [5] Burr D., Della Rocca E., & Morrone M. C. (2013). Contextual effects in interval-duration judgements in vision, audition and touch. Experimental Brain Research, 230(1), 87-98. [6] Casassus M., Poliakoff E., Gowen E., Poole D., & Jones L. A. (2019). Time perception and autistic spectrum condition: A systematic review. Autism Research, 12(10), 1440-1462. [7] Chang, C. J., & Jazayeri, M. (2018). Integration of speed and time for estimating time to contact. Proceedings of the National Academy of Sciences, 115(12), E2879-E2887. [8] Chen L. H., Zhou X. L., Müller H. J., & Shi Z. H. (2018). What you see depends on what you hear: Temporal averaging and crossmodal integration. Journal of Experimental Psychology: General, 147(12), 1851-1864. [9] Chen Y. G., Peng C. H., & Avitt A. (2021). A unifying Bayesian framework accounting for spatiotemporal interferences with a deceleration tendency. Vision Research, 187, 66-74. [10] Chen Y. G., Zhang B. W., & Körding K. P. (2016). Speed constancy or only slowness: What drives the Kappa effect. PLoS ONE, 11(4), Article e0154013. [11] Cicchini G. M., Arrighi R., Cecchetti L., Giusti M., & Burr D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056-1060. [12] Cohen J., Hansel C. E. M., & Sylvester J. D. (1953). A new phenomenon in time judgment. Nature, 172(4385), Article 901. [13] Cui M. H., Peng C. H., Huang M., & Chen Y. G. (2022). Electrophysiological evidence for a common magnitude representation of spatiotemporal information in working memory. Cerebral Cortex, 32(18), 4068-4079. [14] Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11(12), 504-513. [15] Elliott M. T., Wing A. M., & Welchman A. E. (2014). Moving in time: Bayesian causal inference explains movement coordination to auditory beats. Proceedings of the Royal Society B: Biological Sciences, 281(1786), Article 20140751. [16] Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433. [17] Gibbon, J. (1977). Scalar expectancy theory and Weber' s law in animal timing. Psychological Review, 84(3), 279-325. [18] Gori M., Chilosi A., Forli F., & Burr D. (2017). Audio-visual temporal perception in children with restored hearing. Neuropsychologia, 99, 350-359. [19] Griffiths, T. L., & Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: General, 140(4), 725-743. [20] Gu B. M., Jurkowski A. J., Shi Z. H., & Meck W. H. (2016). Bayesian optimization of interval timing and biases in temporal memory as a function of temporal context, feedback, and dopamine levels in young, aged, and Parkinson' s disease patients. Timing and Time Perception, 4(4), 315-342. [21] Hallez Q., Damsma A., Rhodes D., van Rijn H., & Droit-Volet S. (2019). The dynamic effect of context on interval timing in children and adults. Acta Psychologica, 192, 87-93. [22] Hayashi, M. J., & Ivry, R. B. (2020). Duration selectivity in right parietal cortex reflects the subjective experience of time. Journal of Neuroscience, 40(40), 7749-7758. [23] Helson, H. (1930). The tau effect—An example of psychological relativity. Science, 71(1847), 536-537. [24] Ide M., Yaguchi A., Sano M., Fukatsu R., & Wada M. (2019). Higher tactile temporal resolution as a basis of hypersensitivity in individuals with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(1), 44-53. [25] Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13(8), 1020-1026. [26] Jazayeri, M., & Shadlen, M. N. (2015). A neural mechanism for sensing and reproducing a time interval. Current Biology, 25(20), 2599-2609. [27] Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91(1), 128-142. [28] Karaminis T., Cicchini G. M., Neil L., Cappagli G., Aagten-Murphy D., Burr D., & Pellicano E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, Article 28570. [29] Kopp B., Seer C., Lange F., Kluytmans A., Kolossa A., Fingscheidt T., & Hoijtink H. (2016). P300 amplitude variations, prior probabilities, and likelihoods: A Bayesian ERP study. Cognitive, Affective and Behavioral Neuroscience, 16(5), 911-928. [30] Körding K. P., Beierholm U., Ma W. J., Quartz S., Tenenbaum J. B., & Shams L. (2007). Causal inference in multisensory perception. PLoS ONE, 2(9), Article e943. [31] Miyazaki M., Yamamoto S., Uchida S., & Kitazawa S. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment. Nature Neuroscience, 9(7), 875-877. [32] Narain D., Remington E. D., Zeeuw C. I. D., & Jazayeri M. (2018). A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 9(1), Article 469. [33] Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510. [34] Pérez, O., & Merchant, H. (2018). The synaptic properties of cells define the hallmarks of interval timing in a recurrent neural network. Journal of Neuroscience, 38(17), 4186-4199. [35] Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. Journal of Neuroscience, 31(47), 17220-17229. [36] Petzschner F. H., Glasauer S., & Stephan K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293. [37] Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56-61. [38] Pouget A., Beck J. M., Ma W. J., & Latham P. E. (2013). Probabilistic brains: Knowns and unknowns. Nature Neuroscience, 16(9), 1170-1178. [39] Rescorla, M. (2021). Bayesian modeling of the mind: From norms to neurons. WIREs Cognitive Science, 12(1), Article e1540. [40] Roach N. W., McGraw P. V., Whitaker D. J., & Heron J. (2017). Generalization of prior information for rapid Bayesian time estimation. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 412-417. [41] Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive Sciences, 14(9), 425-432. [42] Shi Z. H., Church R. M., & Meck W. H. (2013). Bayesian optimization of time perception. Trends in Cognitive Sciences, 17(11), 556-564. [43] Toso A., Reinartz S., Pulecchi F., & Diamond M. E. (2021). Time coding in rat dorsolateral striatum. Neuron, 109(22), 3663-3673. [44] Wada M., Umesawa Y., Sano M., Tajima S., Kumagaya S., & Miyazaki M. (2023). Weakened Bayesian calibration for tactile temporal order judgment in individuals with higher autistic traits. Journal of Autism and Developmental Disorders, 53(1), 378-389. [45] Walker E. Y., Cotton R. J., Ma W. J., & Tolias A. S. (2020). A neural basis of probabilistic computation in visual cortex. Nature Neuroscience, 23(1), 122-129. [46] Wing A. M., Doumas M., & Welchman A. E. (2010). Combining multisensory temporal information for movement synchronisation. Experimental Brain Research, 200(3-4), 277-282. [47] Yoshimatsu, H., & Yotsumoto, Y. (2021). Weighted integration of duration information across visual and auditory modality is influenced by modality-specific attention. Frontiers in Human Neuroscience, 15, Article 725449. [48] Zhang, H. H., & Zhou, X. L. (2017). Supramodal representation of temporal priors calibrates interval timing. Journal of Neurophysiology, 118(2), 1244-1256. [49] Zhang, L. Q., & Stocker, A. A. (2022). Prior expectations in visual speed perception predict encoding characteristics of neurons in area MT. Journal of Neuroscience, 42(14), 2951-2962. [50] Zhou H. Y., Cai X. L., Weigl M., Bang P., Cheung E. F. C., & Chan, R. C. K. (2018). Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 86, 66-76. |