健康和抑郁人群金钱和社会奖赏加工的神经机制*

李思瑾, 汤煜尧, 张丹丹

心理科学 ›› 2024, Vol. 47 ›› Issue (6) : 1317-1327.

PDF(372 KB)
中文  |  English
PDF(372 KB)
心理科学 ›› 2024, Vol. 47 ›› Issue (6) : 1317-1327. DOI: 10.16719/j.cnki.1671-6981.20240604
基础、实验与工效

健康和抑郁人群金钱和社会奖赏加工的神经机制*

  • 李思瑾, 汤煜尧, 张丹丹**
作者信息 +

Neural Mechanism of Monetary and Social Reward Processing in Healthy and Depressed Populations

  • Li Sijin, Tang Yuyao, Zhang Dandan
Author information +
文章历史 +

摘要

奖赏是目标导向行为的强大驱动力。奖赏加工缺陷是抑郁症的核心症状之一,严重影响认知功能和日常生活。考察健康和抑郁人群金钱和社会奖赏加工的研究发现,阈下抑郁和抑郁障碍患者均表现出奖赏期待降低、快感体验减弱等异常,表现为眶额叶、背外侧前额叶-伏隔核、壳核等奖赏回路对奖赏线索神经反应减弱,背侧前扣带回和前脑岛活动异常等。相比于金钱奖赏加工缺陷,抑郁人群对社会奖赏的期待和体验受损更为明显。未来研究应在严格控制奖赏水平的基础上,结合脑调控技术瞄准奖赏受损脑区,探索有前景的干预方案,并利用人工智能设备为社会奖赏功能的诊治提供新思路。

Abstract

Monetary and social rewards (e.g., praise) are common incentives that drive motivation and reinforce behaviors linked to future gains. Individuals with depression often confront social dysfunction and anhedonia, a diminished interest in pleasurable activities, raising questions about potential differences in the neural mechanisms that process these rewards. This review summarizes the neural processes involved in the processing of monetary and social rewards at two critical stages: anticipation and consumption. It first examines how these rewards activate neural systems in healthy individuals, before exploring the alterations in reward processing observed in those with subclinical depression and depressive disorders. Lastly, the review identifies unresolved questions in this field and aims to inspire future research that will deepen our understanding and inform clinical strategies for treating anhedonia symptoms.
Neuroimaging evidence using the broadly applied incentive delay tasks has connected reward processing to brain reward circuits, particularly the ventral striatum. Specifically, studies in healthy populations demonstrate that compared to non-reward cues, anticipating monetary and social rewards elicited heightened activations in the reward and action preparation brain networks, including the nucleus accumbens, caudate, and supplementary motor area. Social rewards additionally engage the mentalizing system for social signal evaluation, involving areas such as the temporoparietal junction and precuneus. EEG studies indicate that components such as cue-P3, contingent negative variation (CNV), and stimulus-preceding negativity (SPN) elicited by reward cues serve as markers of anticipatory responses, with more desirable rewards yielding larger amplitudes. During reward consumption, enhanced activation is observed in the orbitofrontal cortex (OFC)/ventromedial prefrontal cortex (VMPFC), brain regions involved in encoding the value of either monetary or social reward feedback. Notably, there is limited evidence suggesting neural differences in processing monetary vs. social rewards: monetary rewards predominantly activate the thalamus, whereas social rewards engage emotional brain regions like the amygdala. Moreover, EEG findings suggest that reward-related positivity (RewP) and feedback-P3 are crucial markers of reward consumption, with more favored rewards showing larger amplitudes.
Anhedonia in individuals with depression may stem from abnormalities in either or both stages of reward anticipation and consumption, though conclusive evidence remains elusive. Research shows that depressed individuals exhibit deficits in anticipatory pleasure for both monetary and social rewards, characterized primarily by attenuated ventral striatal activation, reduced functional connectivity between the dorsolateral prefrontal cortex (DLPFC) and striatum/putamen, and altered activation in the anterior cingulate cortex. Notably, the impaired anticipation of social rewards is more pronounced than that of monetary rewards, marked by insufficient activation in areas such as the dorsomedial prefrontal cortex and reduced CNV amplitudes. Intriguingly, depression does not seem to affect individuals’ anticipation of social rewards from humanoid robots, suggesting significant potential for artificial intelligence devices to restore social functions among depressed individuals. Concerning consumption anhedonia, deficits in social reward processing are particularly prominent in depressed populations, as evidenced by altered feedback-related negativity (FRN) and feedback-P3 amplitudes, as well as aberrant activity in the striatum and insula.
Several critical avenues warrant further exploration. First, research on neuromodulation aimed at rectifying aberrant pleasure processing is limited. While existing studies have shown that excitatory brain stimulation over the DLPFC via transcranial magnetic stimulation (TMS) can enhance anticipation for monetary rewards in patients with major depressive disorder, its effects on consumption pleasure remain largely unexplored. Investigating neuromodulation or neurofeedback targeting value-encoding regions, such as the OFC/VMPFC could provide insights into alleviating consumption anhedonia. Additionally, transferring intervention strategies from monetary to social reward processing and assessing the efficacy in targeting the social brain require further examination. Second, comparative studies should rigorously control for the levels of “wanting” and “liking” associated with monetary and social rewards. Research in healthy populations indicates that reaction times differ between social and monetary incentive paradigms but converge when these levels are accounted for. Similarly, while studies reveal no significant group differences in reward anticipation between healthy and depressed individuals, healthy participants exhibit greater effort and faster responses with increasing reward levels, a pattern not seen in the depressed group. Furthermore, a critical review of comparative studies on monetary and social rewards highlights differences in dimensions such as timing, familiarity, processing priority, and certainty. Future research should carefully control for these potential factors and further investigate the effects of reward types on processing. Third, exploring the feasibility of using artificial intelligence devices to assist depressed individuals in restoring social reward processing and other social functions holds great promise. Studies suggest that interactions with intelligent robots can improve emotional connections and alleviate depressive symptoms, suggesting the therapeutic potential of artificial intelligence devices. Future research should explore these possibilities to offer novel insights and improve treatment outcomes and quality of life for individuals with depression and anhedonia.

关键词

抑郁 / 快感缺失 / 金钱奖赏 / 社会奖赏 / 伏隔核

Key words

depression / anhedonia / monetary reward / social reward / nucleus accumbens

引用本文

导出引用
李思瑾, 汤煜尧, 张丹丹. 健康和抑郁人群金钱和社会奖赏加工的神经机制*[J]. 心理科学. 2024, 47(6): 1317-1327 https://doi.org/10.16719/j.cnki.1671-6981.20240604
Li Sijin, Tang Yuyao, Zhang Dandan. Neural Mechanism of Monetary and Social Reward Processing in Healthy and Depressed Populations[J]. Journal of Psychological Science. 2024, 47(6): 1317-1327 https://doi.org/10.16719/j.cnki.1671-6981.20240604

参考文献

[1] 何振宏, 张丹丹. (2018). 抑郁个体对社会反馈的加工: 研究现状及存在问题. 心理科学, 41(1), 237-243.
[2] 何振宏, 张丹丹, 罗跃嘉. (2015). 抑郁症人群的心境一致性认知偏向. 心理科学进展, 23(12), 2118-2128.
[3] Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current Opinion in Psychology, 4, 114-118.
[4] Ait Oumeziane B., Schryer-Praga J., & Foti D. (2017). “Why don’t they ‘like’ me more?”: Comparing the time courses of social and monetary reward processing. Neuropsychologia, 107, 48-59.
[5] Barch D. M., Pagliaccio D., & Luking K. (2016). Mechanisms underlying motivational deficits in psychopathology: Similarities and differences in depression and schizophrenia. Current Topics in Behavioral Neurosciences, 27, 411-449.
[6] Barman A., Richter S., Soch J., Deibele A., Richter A., Assmann A., & Schott B. H. (2015). Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient. Social Cognitive and Affective Neuroscience, 10(11), 1537-1547.
[7] Beck, A. T., & Bredemeier, K. (2016). A unified model of depression: Integrating clinical, cognitive, biological, and evolutionary perspectives. Clinical Psychological Science, 4(4), 596-619.
[8] Berry M. P., Tanovic E., Joormann J., & Sanislow C. A. (2019). Relation of depression symptoms to sustained reward and loss sensitivity. Psychophysiology, 56(7), Article e13364.
[9] Bhanji, J. P., & Delgado, M. R. (2014). The social brain and reward: Social information processing in the human striatum. Wiley Interdisciplinary Reviews. Cognitive Science, 5(1), 61-73.
[10] Bi R., Dong W. X., Zheng Z. X., Li S. J., & Zhang D. D. (2022). Altered motivation of effortful decision-making for self and others in subthreshold depression. Depression and Anxiety, 39(8-9), 633-645.
[11] Bi R., Zhao Y. L., Li S. J., Xu F., Peng W. W., Tan S. P., & Zhang D. D. (2024). Brain stimulation over the left DLPFC enhances motivation for effortful rewards in patients with major depressive disorder. Journal of Affective Disorders, 356, 414-423.
[12] Bress J. N., Foti D., Kotov R., Klein D. N., & Hajcak G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74-81.
[13] Brunia C. H. M., Hackley S. A., van Boxtel, G. J. M., Kotani Y., & Ohgami Y. (2011). Waiting to perceive: Reward or punishment? Clinical Neurophysiology, 122(5), 858-868.
[14] Carl H., Walsh E., Eisenlohr-Moul T., Minkel J., Crowther A., Moore T., & Smoski M. J. (2016). Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. Journal of Affective Disorders, 203, 204-212.
[15] Craske M. G., Meuret A. E., Ritz T., Treanor M., & Dour H. J. (2016). Treatment for anhedonia: A neuroscience driven approach. Depression and Anxiety, 33(10), 927-938.
[16] Demurie E., Roeyers H., Baeyens D., & Sonuga-Barke E. (2012). The effects of monetary and social rewards on task performance in children and adolescents: Liking is not enough. International Journal of Methods in Psychiatric Research, 21(4), 301-310.
[17] Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 68-77.
[18] Dichter G. S., Kozink R. V., McClernon F. J., & Smoski M. J. (2012). Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. Journal of Affective Disorders, 136(3), 1126-1134.
[19] Diekhof E. K., Kaps L., Falkai P., & Gruber O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude - an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252-1266.
[20] Dillon D. G., Holmes A. J., Jahn A. L., Bogdan R., Wald L. L., & Pizzagalli D. A. (2008). Dissociation of neural regions associated with anticipatory versus consummatory phases of incentive processing. Psychophysiology, 45(1), 36-49.
[21] Distefano A., Jackson F., Levinson A. R., Infantolino Z. P., Jarcho J. M., & Nelson B. D. (2018). A comparison of the electrocortical response to monetary and social reward. Social Cognitive and Affective Neuroscience, 13(3), 247-255.
[22] Doñamayor N., Schoenfeld M. A., & Münte T. F. (2012). Magneto- and electroencephalographic manifestations of reward anticipation and delivery. NeuroImage, 62(1), 17-29.
[23] Eisenberger N. I., Lieberman M. D., & Williams K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290-292.
[24] Ethridge P., Kujawa A., Dirks M. A., Arfer K. B., Kessel E. M., Klein D. N., & Weinberg A. (2017). Neural responses to social and monetary reward in early adolescence and emerging adulthood. Psychophysiology, 54(12), 1786-1799.
[25] Flores A., Münte T. F., & Doñamayor N. (2015). Event-related EEG responses to anticipation and delivery of monetary and social reward. Biological Psychology, 109, 10-19.
[26] Foti D., Carlson J. M., Sauder C. L., & Proudfit G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 50-58.
[27] Foti, D., & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 1-8.
[28] Gabbay V., Johnson A. R., Alonso C. M., Evans L. K., Babb J. S., & Klein R. G. (2015). Anhedonia, but not irritability, is associated with illness severity outcomes in adolescent major depression. Journal of Child and Adolescent Psychopharmacology, 25(3), 194-200.
[29] Goerlich K. S., Votinov M., Lammertz S. E., Winkler L., Spreckelmeyer K. N., Habel U., & Gossen A. (2017). Effects of alexithymia and empathy on the neural processing of social and monetary rewards. Brain Structure and Function, 222(5), 2235-2250.
[30] Gossen A., Groppe S. E., Winkler L., Kohls G., Herrington J., Schultz R. T., & Spreckelmeyer K. N. (2014). Neural evidence for an association between social proficiency and sensitivity to social reward. Social Cognitive and Affective Neuroscience, 9(5), 661-670.
[31] Gu R. L., Huang W. H., Camilleri J., Xu P. F., Wei P., Eickhoff S. B., & Feng C. L. (2019). Love is analogous to money in human brain: Coordinate-based and functional connectivity meta-analyses of social and monetary reward anticipation. Neuroscience and Biobehavioral Reviews, 100, 108-128.
[32] Halahakoon D. C., Kieslich K., O'Driscoll C., Nair A., Lewis G., & Roiser J. P. (2020). Reward-processing behavior in depressed participants relative to healthy volunteers: A systematic review and meta-analysis. JAMA Psychiatry, 77(12), 1286-1295.
[33] He Z. H., Ao X., Muhlert N., Elliott R., & Zhang D. D. (2022). Neural substrates of expectancy violation associated with social feedback in individuals with subthreshold depression. Psychological Medicine, 52(11), 2043-2051.
[34] He Z. H., Zhang D. D., Muhlert N., & Elliott R. (2019). Neural substrates for anticipation and consumption of social and monetary incentives in depression. Social Cognitive and Affective Neuroscience, 14(8), 815-826.
[35] Healey K. L., Morgan J., Musselman S. C., Olino T. M., & Forbes E. E. (2014). Social anhedonia and medial prefrontal response to mutual liking in late adolescents. Brain and Cognition, 89, 39-50.
[36] Hershenberg R., Satterthwaite T. D., Daldal A., Katchmar N., Moore T. M., Kable J. W., & Wolf D. H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. Journal of Affective Disorders, 196, 97-100.
[37] Izuma K., Saito D. N., & Sadato N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284-294.
[38] Joormann, J., & Stanton, C. H. (2016). Examining emotion regulation in depression: A review and future directions. Behaviour Research and Therapy, 86, 35-49.
[39] Keren H., O' Callaghan G., Vidal-Ribas P., Buzzell G. A., Brotman M. A., Leibenluft E., & Stringaris A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. The American Journal of Psychiatry, 175(11), 1111-1120.
[40] Kong S. Q., Chen Y. M., Huang H. J., Yang W., Lyu D., Wang F., & Hong W. (2024). Efficacy of transcranial direct current stimulation for treating anhedonia in patients with depression: A randomized, double-blind, sham-controlled clinical trial. Journal of Affective Disorders, 350, 264-273.
[41] Knutson B., Bhanji J. P., Cooney R. E., Atlas L. Y., & Gotlib I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686-692.
[42] Knutson B., Fong G. W., Adams C. M., Varner J. L., & Hommer D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683-3687.
[43] Knutson B., Westdorp A., Kaiser E., & Hommer D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 20-27.
[44] Kujawa A., Arfer K. B., Klein D. N., & Proudfit G. H. (2014). Electrocortical reactivity to social feedback in youth: A pilot study of the Island Getaway task. Developmental Cognitive Neuroscience, 10, 140-147.
[45] Kupferberg A., Bicks L., & Hasler G. (2016). Social functioning in major depressive disorder. Neuroscience and Biobehavioral Reviews, 69, 313-332.
[46] Landes I., Bakos S., Kohls G., Bartling J., Schulte-Körne G., & Greimel E. (2018). Altered neural processing of reward and punishment in adolescents with major depressive disorder. Journal of Affective Disorders, 232, 23-33.
[47] Li S. J., Xie H., Zheng Z. X., Chen W. M., Xu F., Hu X. Q., & Zhang D. D. (2022). The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. Human Brain Mapping, 43(9), 2898-2910.
[48] Liu X., Hairston J., Schrier M., & Fan J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219-1236.
[49] Martins D., Rademacher L., Gabay A. S., Taylor R., Richey J. A., Smith D. V., & Paloyelis Y. (2021). Mapping social reward and punishment processing in the human brain: A voxel-based meta-analysis of neuroimaging findings using the social incentive delay task. Neuroscience and Biobehavioral Reviews, 122, 1-17.
[50] Matyjek M., Meliss S., Dziobek I., & Murayama K. (2020). A multidimensional view on social and non-social rewards. Frontiers in Psychiatry, 11, Article 818.
[51] Nelson, B. D., & Jarcho, J. M. (2021). Neural response to monetary and social feedback demonstrates differential associations with depression and social anxiety. Social Cognitive and Affective Neuroscience, 16(10), 1048-1056.
[52] Ohgami Y., Kotani Y., Tsukamoto T., Omura K., Inoue Y., Aihara Y., & Nakayama M. (2006). Effects of monetary reward and punishment on stimulus-preceding negativity. Psychophysiology, 43(3), 227-236.
[53] Oldham S., Murawski C., Fornito A., Youssef G., Yücel M., & Lorenzetti V. (2018). The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Human Brain Mapping, 39(8), 3398-3418.
[54] Pegg S., Arfer K. B., & Kujawa A. (2021). Altered reward responsiveness and depressive symptoms: An examination of social and monetary reward domains and interactions with rejection sensitivity. Journal of Affective Disorders, 282, 717-725.
[55] Pizzagalli, D. A. (2022). Toward a better understanding of the mechanisms and pathophysiology of anhedonia: Are we ready for translation? The American Journal of Psychiatry, 179(7), 458-469.
[56] Pizzagalli D. A., Holmes A. J., Dillon D. G., Goetz E. L., Birk J. L., Bogdan R., & Fava M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. The American Journal of Psychiatry, 166(6), 702-710.
[57] Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
[58] Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459.
[59] Rademacher L., Krach S., Kohls G., Irmak A., Gründer G., & Spreckelmeyer K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49(4), 3276-3285.
[60] Rappaport, B. I., & Barch, D. M. (2020). Brain responses to social feedback in internalizing disorders: A comprehensive review. Neuroscience and Biobehavioral Reviews, 118, 784-808.
[61] Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8), 549-562.
[62] Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
[63] Ryan J., Pouliot J. J., Hajcak G., & Nee D. E. (2022). Manipulating reward sensitivity using reward circuit-targeted transcranial magnetic stimulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(8), 833-840.
[64] Rzepa E., Fisk J., & McCabe C. (2017). Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. Journal of Psychopharmacology, 31(3), 303-311.
[65] Sankar A., Yttredahl A. A., Fourcade E. W., Mickey B. J., Love T. M., Langenecker S. A., & Hsu D. T. (2019). Dissociable neural responses to monetary and social gain and loss in women with major depressive disorder. Frontiers in Behavioral Neuroscience, 13, Article 149.
[66] Soutschek A., Kang P., Ruff C. C., Hare T. A., & Tobler P. N. (2018). Brain stimulation over the frontopolar cortex enhances motivation to exert effort for reward. Biological Psychiatry, 84(1), 38-45.
[67] Soutschek, A., & Tobler, P. N. (2020). Causal role of lateral prefrontal cortex in mental effort and fatigue. Human Brain Mapping, 41(16), 4630-4640.
[68] Spreckelmeyer K. N., Krach S., Kohls G., Rademacher L., Irmak A., Konrad K., & Gründer G. (2009). Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Social Cognitive and Affective Neuroscience, 4(2), 158-165.
[69] Stoy M., Schlagenhauf F., Sterzer P., Bermpohl F., Hägele C., Suchotzki K., & Ströhle A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677-688.
[70] Strafella A. P., Paus T., Barrett J., & Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The Journal of Neuroscience, 21(15), Article RC157.
[71] Stringaris A., Vidal-Ribas Belil P., Artiges E., Lemaitre H., Gollier-Briant F., Wolke S., & IMAGEN Consortium. (2015). The brain' s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. The American Journal of Psychiatry, 172(12), 1215-1223.
[72] Szczypiński, J. J., & Gola, M. (2018). Dopamine dysregulation hypothesis: The common basis for motivational anhedonia in major depressive disorder and schizophrenia? Reviews in the Neurosciences, 29(7), 727-744.
[73] Takamura M., Okamoto Y., Okada G., Toki S., Yamamoto T., Ichikawa N., & Yamawaki S. (2017). Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 317-323.
[74] Treadway M. T., Bossaller N. A., Shelton R. C., & Zald D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553-558.
[75] Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537-555.
[76] Ubl B., Kuehner C., Kirsch P., Ruttorf M., Diener C., & Flor H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience, 10(8), 1102-1112.
[77] Wake, S. J., & Izuma, K. (2017). A common neural code for social and monetary rewards in the human striatum. Social Cognitive and Affective Neuroscience, 12(10), 1558-1564.
[78] Wang X., He K. L., Chen T. T., Shi B., Yang J., Geng W. Y., & Yu F. Q. (2021). Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depression and Anxiety, 38(9), 972-984.
[79] Wolf D. H., Satterthwaite T. D., Kantrowitz J. J., Katchmar N., Vandekar L., Elliott M. A., & Ruparel K. (2014). Amotivation in schizophrenia: Integrated assessment with behavioral, clinical, and imaging measures. Schizophrenia Bulletin, 40(6), 1328-1337.
[80] Yin Y. D., Jia N., & Wakslak C. J. (2024). AI can help people feel heard, but an AI label diminishes this impact. Proceedings of the National Academy of Sciences of the United States of America, 121(14), Article e2319112121.
[81] Yttredahl A. A., McRobert E., Sheler B., Mickey B. J., Love T. M., Langenecker S. A., & Hsu D. T. (2018). Abnormal emotional and neural responses to romantic rejection and acceptance in depressed women. Journal of Affective Disorders, 234, 231-238.
[82] Zhang D. D., Shen J. S., Bi R., Zhang Y. Y., Zhou F., Feng C. L., & Gu R. L. (2022). Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms. Psychological Medicine, 52(11), 2080-2094.
[83] Zhang D. D., Shen J. S., Li S. J., Gao K. X., & Gu R. L. (2021). I, robot: Depression plays different roles in human-human and human-robot interactions. Translational Psychiatry, 11(1), Article 438.
[84] Zhang W. N., Chang S. H., Guo L. Y., Zhang K. L., & Wang J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2), 531-539.

基金

*本研究得到国家自然科学基金(32271102,31920103009)和国家社会科学基金(20&ZD153)的资助

PDF(372 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/