心理科学 ›› 2025, Vol. 48 ›› Issue (1): 34-43.DOI: 10.16719/j.cnki.1671-6981.20250104
辛海燕1, 陈曦梅1, 李为1, 陈红**1,2,3
出版日期:
2025-01-20
发布日期:
2025-02-21
通讯作者:
**陈红,E-mail: chenhswu@163.com
基金资助:
Xin Haiyan1, Chen Ximei1, Li Wei1, Chen Hong1,2,3
Online:
2025-01-20
Published:
2025-02-21
摘要: 肥胖已成为严重的全球健康问题。目前我国6至17岁儿童青少年超重肥胖率高达19%。大脑奖赏系统和抑制控制系统(双系统)对儿童肥胖的重要作用已经得到了实证研究的支持。超重/肥胖儿童在双系统结构和功能上表现出异常,尤其是伏隔核体积增大、眶额叶皮层变薄,前额叶灰质体积减小,在奖赏网络、控制网络中的功能连通性较低。可见,超重/肥胖儿童表现出奖赏加工和抑制控制的功能异常,这与不健康进食行为有关,进而加剧了肥胖风险。当前研究多聚焦于大脑单系统在儿童肥胖发生发展过程中的作用,缺少对双系统相互作用的系统探究,而考察多个关键脑区/系统间的交互关系有助于更准确地识别出高风险儿童。未来需要更多大型纵向研究,结合认知行为测量,全面多维地探明儿童肥胖与大脑发育的动态发展机制,以期为儿童肥胖的早期预防和干预提供依据和支持。
辛海燕, 陈曦梅, 李为, 陈红. 儿童超重/肥胖的神经机制:基于奖赏-抑制双系统视角*[J]. 心理科学, 2025, 48(1): 34-43.
Xin Haiyan, Chen Ximei, Li Wei, Chen Hong. Neural Mechanisms of Childhood Obesity:A Reward-Inhibition Dual System Perspective[J]. Journal of Psychological Science, 2025, 48(1): 34-43.
[1] Adise S., Allgaier N., Laurent J., Hahn S., Chaarani B., Owens M., & Garavan H. P. (2021). Multimodal brain predictors of current weight and weight gain in children enrolled in the ABCD study ®. Developmental Cognitive Neuroscience, 49, Article 100948. [2] Adise S., Geier C. F., Roberts N. J., White C. N., & Keller K. L. (2018). Is brain response to food rewards related to overeating? A test of the reward surfeit model of overeating in children. Appetite, 128, 167-179. [3] Adise S., Geier C. F., Roberts N. J., White C. N., & Keller K. L. (2019). Food or money? Children' s brains respond differently to rewards regardless of weight status. Pediatric Obesity, 14(2), Article e12469. [4] Adise S., Marshall A. T., Hahn S., Zhao S. M., Kan E., Rhee K. E., & Sowell E. R. (2023). Longitudinal assessment of brain structure and behaviour in youth with rapid weight gain: Potential contributing causes and consequences. Pediatric Obesity, 18(2), Article e12985. [5] Adise S., White C. N., Roberts N. J., Geier C. F., & Keller K. L. (2021). Children' s inhibitory control abilities in the presence of rewards are related to weight status and eating in the absence of hunger. Appetite, 167, Article 105610. [6] Alosco M. L., Stanek K. M., Galioto R., Korgaonkar M. S., Grieve S. M., Brickman A. M., & Gunstad J. (2014). Body mass index and brain structure in healthy children and adolescents. International Journal of Neuroscience, 124(1), 49-55. [7] Appelhans, B. M. (2009). Neurobehavioral inhibition of reward-driven feeding: Implications for dieting and obesity. Obesity, 17(4), 640-647. [8] Assari, S., & Boyce, S. (2021). Resting-state functional connectivity between putamen and salience network and childhood body mass index. Neurology International, 13(1), 85-101. [9] Assari S., Boyce S., & Bazargan M. (2020). Nucleus accumbens functional connectivity with the frontoparietal network predicts subsequent change in body mass index for American children. Brain Sciences, 10(10), Article 703. [10] Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79. [11] Batterink L., Yokum S., & Stice E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage, 52(4), 1696-1703. [12] Bhutani S., Christian I. R., Palumbo D., & Wiggins J. L. (2021). Reward-related neural correlates in adolescents with excess body weight. NeuroImage: Clinical, 30, Article 102618. [13] Black W. R., Lepping R. J., Bruce A. S., Powell J. N., Bruce J. M., Martin L. E., & Simmons W. K. (2014). Tonic hyper-connectivity of reward neurocircuitry in obese children. Obesity, 22(7), 1590-1593. [14] Brooks S. J., Smith C., & Stamoulis C. (2023). Excess BMI in early adolescence adversely impacts maturating functional circuits supporting high-level cognition and their structural correlates. International Journal of Obesity, 47(7), 590-605. [15] Bruce A. S., Martin L. E., & Savage C. R. (2011). Neural correlates of pediatric obesity. Preventive Medicine, 52, S29-S35. [16] Carnell S., Thapaliya G., Jansen E., & Chen L. Y. (2023). Biobehavioral susceptibility for obesity in childhood: Behavioral, genetic and neuroimaging studies of appetite. Physiology and Behavior, 271, Article 114313. [17] Casey B. J., Jones R. M., & Hare, T. A. (2008). The adolescent brain. In A. Kingstone & M. B. Miller (Eds.), The year in cognitive neuroscience 2008 (pp. 111-126). Blackwell Publishing.. [18] Chen X. M., Gao X., Qin J. M., Wang C., Xiao M. Y., Tian Y., & Chen H. (2021). Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. NeuroImage: Clinical, 30, Article 102671. [19] Chen X. M., Li W., Liu Y., Xiao M. Y., & Chen H. (2023). Altered effective connectivity between reward and inhibitory control networks in people with binge eating episodes: A spectral dynamic causal modeling study. Appetite, 188, Article 106763. [20] Crino M., Sacks G., Vandevijvere S., Swinburn B., & Neal B. (2015). The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Current Obesity Reports, 4(1), 1-10. [21] Cui J. Q., Li G. Y., Zhang M. M., Xu J. Y., Qi H. W., Ji W. B., & Zhang Y. (2023). Associations between body mass index, sleep-disordered breathing, brain structure, and behavior in healthy children. Cerebral Cortex, 33(18), 10087-10097. [22] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. [23] Dietz, W. H. (1998). Childhood weight affects adult morbidity and mortality. The Journal of Nutrition, 128(2), 411S-414S. [24] Dwyer D. B., Falkai P., & Koutsouleris N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91-118. [25] Farr O. M., Li C. S. R., & Mantzoros C. S. (2016). Central nervous system regulation of eating: Insights from human brain imaging. Metabolism, 65(5), 699-713. [26] Glazer J. E., Kelley N. J., Pornpattananangkul N., Mittal V. A., & Nusslock R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132, 184-202. [27] Gluck M. E., Viswanath P., & Stinson E. J. (2017). Obesity, appetite, and the prefrontal cortex. Current Obesity Reports, 6(4), 380-388. [28] Granziera F., Guzzardi M. A., & Iozzo P. (2021). Associations between the Mediterranean diet pattern and weight status and cognitive development in preschool children. Nutrients, 13(11), Article 3723. [29] Haynos A. F., Camchong J., Pearson C. M., Lavender J. M., Mueller B. A., Peterson C. B., & Lim K. O. (2021). Resting state Hypoconnectivity of reward networks in binge eating disorder. Cerebral Cortex, 31(5), 2494-2504. [30] Jiang F. K., Li G. Y., Ji W. B., Zhang Y. Q., Wu F. F., Hu Y., & Zhang Y. (2023). Obesity is associated with decreased gray matter volume in children: A longitudinal study. Cerebral Cortex, 33(7), 3674-3682. [31] Kaltenhauser S., Weber C. F., Lin H., Mozayan A., Malhotra A., Constable R. T., & Payabvash S. (2023). Association of body mass index and waist circumference with imaging metrics of brain integrity and functional connectivity in children aged 9 to 10 years in the US, 2016-2018. JAMA Network Open, 6(5), Article e2314193. [32] Kennedy J. T., Collins P. F., & Luciana M. (2016). Higher adolescent body mass index is associated with lower regional gray and white matter volumes and lower levels of positive emotionality. Frontiers in Neuroscience, 10, Article 413. [33] Kim M. S., Luo S., Azad A., Campbell C. E., Felix K., Cabeen R. P., Belcher B. R., & Herting M. M. (2020). Prefrontal cortex and amygdala Subregion morphology are associated with obesity and dietary self-control in children and adolescents. Frontiers in Human Neuroscience, 14, Article 563415. [34] Kroemer, N. B., & Small, D. M. (2016). Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology and Behavior, 162, 37-45. [35] Laurent J. S., Watts R., Adise S., Allgaier N., Chaarani B., Garavan H., & Mackey S. (2020). Associations among body mass index, cortical thickness, and executive function in children. JAMA Pediatrics, 174(2), 170-177. [36] Levitan R. D., Rivera J., Silveira P. P., Steiner M., Gaudreau H., Hamilton J., & Meaney M. J. (2015). Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: An early model of compromised inhibitory control and obesity. International Journal of Obesity, 39(4), 614-619. [37] Lindberg L., Hagman E., Danielsson P., Marcus C., & Persson M. (2020). Anxiety and depression in children and adolescents with obesity: A nationwide study in Sweden. BMC Medicine, 18(1), Article 30. [38] Llewellyn, C., & Wardle, J. (2015). Behavioral susceptibility to obesity: Gene-environment interplay in the development of weight. Physiology and Behavior, 152, 494-501. [39] Loos, R. J. F., & Yeo, G. S. H. (2014). The bigger picture of FTO-the first GWAS-identified obesity gene. Nature Reviews Endocrinology, 10(1), 51-61. [40] Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews Genetics, 23(2), 120-133. [41] Lowe C. J., Morton J. B., & Reichelt A. C. (2020). Adolescent obesity and dietary decision making-a brain-health perspective. Lancet Child and Adolescent Health, 4(5), 388-396. [42] Lowe C. J., Reichelt A. C., & Hall P. A. (2019). The prefrontal cortex and obesity: A health neuroscience perspective. Trends in Cognitive Sciences, 23(4), 349-361. [43] Lugo-Candelas C., Pang Y. J., Lee S., Cha J., Hong S. S. E., Ranzenhofer L., & Mayer L. (2020). Differences in brain structure and function in children with the FTO obesity-risk allele. Obesity Science and Practice, 6(4), 409-424. [44] Moreno-Lopez L., Contreras-Rodriguez O., Soriano-Mas C., Stamatakis E. A., & Verdejo-Garcia A. (2016). Disrupted functional connectivity in adolescent obesity. NeuroImage: Clinical, 12, 262-268. [45] Murray S. B., Alba C., Duval C. J., Nagata J. M., Cabeen R. P., Lee D. J., & Jann K. (2023). Aberrant functional connectivity between reward and inhibitory control networks in pre-adolescent binge eating disorder. Psychological Medicine, 53(9), 3869-3878. [46] Nakamura Y., Ozawa S., & Koike S. (2020). Caudate functional connectivity associated with weight change in adolescents. Frontiers in Human Neuroscience, 14, Article 587763. [47] Pauli-Pott U., Albayrak Ö., Hebebrand J., & Pott W. (2010). Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: Dependence on age and inhibitory control component. Child Neuropsychology, 16(6), 592-603. [48] Paus T., Zijdenbos A., Worsley K., Collins D. L., Blumenthal J., Giedd J., Rapoport J. N., & Evans A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908-1911. [49] Pearce A. L., Mackey E., Cherry J. B. C., Olson A., You X. Z., Magge S. N., & Vaidya C. J. (2017). Effect of adolescent bariatric surgery on the brain and cognition: A pilot study. Obesity, 25(11), 1852-1860. [50] Perlaki G., Molnar D., Smeets P. A. M., Ahrens W., Wolters M., Eiben G., & Orsi G. (2018). Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS ONE, 13(10), Article e0205331. [51] Pujol J., Blanco-Hinojo L., Martínez-Vilavella G., Deus J., Pérez-Sola V., & Sunyer J. (2021). Dysfunctional brain reward system in child obesity. Cerebral Cortex, 31(9), 4376-4385. [52] Rapuano K. M., Zieselman A. L., Kelley W. M., Sargent J. D., Heatherton T. F., & Gilbert-Diamond D. (2017). Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 160-165. [53] Reichelt, A. C. (2016). Adolescent maturational transitions in the prefrontal cortex and dopamine signaling as a risk factor for the development of obesity and high fat/high sugar diet induced cognitive deficits. Frontiers in Behavioral Neuroscience, 10, Article 189. [54] Ronan L., Alexander-Bloch A., & Fletcher P. C. (2020). Childhood obesity, cortical structure, and executive function in healthy children. Cerebral Cortex, 30(4), 2519-2528. [55] Sadler J. R., Thapaliya G., Ranganath K., Gabay A., Chen L. Y., Smith K. R., & Carnell S. (2023). Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatric Obesity, 18(8), Article e13042. [56] Salama M., Balagopal B., Fennoy I., & Kumar S. (2023). Childhood obesity, diabetes. And cardiovascular disease risk. Journal of Clinical Endocrinology and Metabolism, 108(12), 3051-3066. [57] Shao X. Y., Tan L. H., & He L. F. (2022). Physical activity and exercise alter cognitive abilities, and brain structure and activity in obese children. Frontiers in Neuroscience, 16, Article 1019129. [58] Shapiro A. L. B., Moore B. F., Sutton B., Wilkening G., Stence N., Dabelea D., & Tregellas J. R. (2020). In utero exposure to maternal overweight or obesity is associated with altered offspring brain function in middle childhood. Obesity, 28(9), 1718-1725. [59] Shulman E. P., Smith A. R., Silva K., Icenogle G., Duell N., Chein J., & Steinberg L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103-117. [60] Simmonds M., Llewellyn A., Owen C. G., & Woolacott N. (2016). Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obesity Reviews, 17(2), 95-107. [61] Smith K. E., Luo S., & Mason T. B. (2021). A systematic review of neural correlates of dysregulated eating associated with obesity risk in youth. Neuroscience and Biobehavioral Reviews, 124, 245-266. [62] Somerville L. H., Jones R. M., & Casey B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72(1), 124-133. [63] Syan S. K., McIntyre-Wood C., Minuzzi L., Hall G., McCabe R. E., & MacKillop J. (2021). Dysregulated resting state functional connectivity and obesity: A systematic review. Neuroscience and Biobehavioral Reviews, 131, 270-292. [64] Tan Z. X., Hu Y., Ji G., Li G. Y., Ding Y. Y., Zhang W. C., & Zhang Y. (2022). Alterations in functional and structural connectivity of basal ganglia network in patients with obesity. Brain Topography, 35(4), 453-463. [65] Tejavibulya L., Rolison M., Gao S. Y., Liang Q. H., Peterson H., Dadashkarimi J., & Scheinost D. (2022). Predicting the future of neuroimaging predictive models in mental health. Molecular Psychiatry, 27(8), 3129-3137. [66] Tiego J., Testa R., Bellgrove M. A., Pantelis C., & Whittle S. (2018). A hierarchical model of inhibitory control. Frontiers in Psychology, 9, Article 1339. [67] Wang J. J., Dong D. B., Liu Y., Yang Y. K., Chen X. M., He Q. H., & Chen H. (2023). Multivariate resting-state functional connectomes predict and characterize obesity phenotypes. Cerebral Cortex, 33(13), 8368-8381. [68] Wang Y. L., Dong D. B., Chen X. M., Gao X., Liu Y., Xiao M. Y., & Chen H. (2023). Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children. Cerebral Cortex, 33(8), 4794-4805. [69] Zhang P., Liu Y., Yu F. X., Wu G. W., Li M. Y., Wang Z., & Wang Z. C. (2021). Hierarchical integrated processing of reward-related regions in obese males: A graph-theoretical-based study. Appetite, 159, Article 105055. |
[1] | 李思瑾, 汤煜尧, 张丹丹. 健康和抑郁人群金钱和社会奖赏加工的神经机制*[J]. 心理科学, 2024, 47(6): 1317-1327. |
[2] | 刘旭, 刘宇潇, 陈倩, 曹敏, 彭霁, 周宗奎. 儿童友谊质量与主观幸福感和孤独感的双向关系:一项纵向研究*[J]. 心理科学, 2024, 47(4): 819-828. |
[3] | 徐晓惠, 徐敏, 张耀华, 张明浩. 儿童程序公平的发展特点及其内在机制*[J]. 心理科学, 2024, 47(4): 829-837. |
[4] | 宋宜琪, 朱楚城, 梁丹丹. 汉语高功能自闭症儿童词汇语义加工中的空间象似效应——兼与图片知觉加工的比较*[J]. 心理科学, 2024, 47(3): 554-561. |
[5] | 任智, 孙凡惠, 远洋, 宋佳润, 王丽娟. 3~6岁ASD儿童基于事件前瞻记忆的损伤:执行功能的作用[J]. 心理科学, 2024, 47(3): 570-580. |
[6] | 史滋福, 陈枭豪. 嵌套集合建模能力和数字表征对儿童贝叶斯推理的影响*[J]. 心理科学, 2024, 47(2): 274-280. |
[7] | 范伟, 杨颖, 董艳秋, 张文洁. 竞争情境下奖赏动机对自我欺骗的影响:眼动证据*[J]. 心理科学, 2024, 47(2): 411-423. |
[8] | 周星, 郝爽, 赵立立, 何蔚祺. 奖赏学习对非目标情绪面孔注意捕获的影响 *[J]. 心理科学, 2023, 46(6): 1298-1304. |
[9] | 辛聪, 刘国雄, 程黎. 儿童前瞻记忆:执行功能的作用 *[J]. 心理科学, 2023, 46(6): 1360-1367. |
[10] | 吴岩, 陈启杨, 胡诗茜. 世界知识和词汇关联在10~12岁儿童句子加工中的作用:眼动研究 *[J]. 心理科学, 2023, 46(5): 1074-1080. |
[11] | 方浩宇, 祝孝亮, 赵鑫. 睡眠质量对10~12岁儿童学业成绩的影响:刷新能力的中介作用 *[J]. 心理科学, 2023, 46(5): 1090-1097. |
[12] | 高彬, 贾莹芳, 姜云鹏, 吴捷. 奖赏动机对自动反应抑制的影响[J]. 心理科学, 2023, 46(4): 795-801. |
[13] | 李菲菲, 方海燕, 陈何, 刘宝根. 自闭症儿童的内隐学习假说:来自人工语法学习的证据*[J]. 心理科学, 2023, 46(4): 809-816. |
[14] | 岳阳, 姜英杰, 龙翼婷, 王凯玉. 奖赏预测误差对记忆辨别的影响:行为及眼动的证据*[J]. 心理科学, 2023, 46(4): 817-824. |
[15] | 孔繁昌, 夏宇娟, 刘诏君, 王美茹, 李晓瑶. 媒体多任务行为影响认知控制:注意分散假说的证据*[J]. 心理科学, 2023, 46(4): 865-872. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1945
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 749
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||