未来思维与问题性网络使用的关联机制:基于网络模型的分析*

齐怀远, 李江勇, 王俊义, 罗扬眉

心理科学 ›› 2025, Vol. 48 ›› Issue (2) : 435-446.

PDF(8816 KB)
中文  |  English
PDF(8816 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (2) : 435-446. DOI: 10.16719/j.cnki.1671-6981.20250216
社会、人格与管理

未来思维与问题性网络使用的关联机制:基于网络模型的分析*

  • 齐怀远, 李江勇, 王俊义, 罗扬眉**
作者信息 +

The Correlation Mechanism between Future Thinking and Problematic Network Use: An Analysis Based on Network Models

  • Qi Huaiyuan, Li Jiangyong, Wang Junyi, Luo Yangmei
Author information +
文章历史 +

摘要

缺乏未来的远见与思考是问题性网络使用(problematic internet use, PIU)发生发展的重要原因之一。而未来思维与PIU的相互作用尚不清楚。研究使用网络分析方法探讨未来思维的认知(未来情景思维、未来自我连续性和延迟折扣)、情感(预期愉悦)和个体差异成分(时间洞察力)与PIU的相互作用,并采用模拟算法识别PIU的最佳干预靶点。通过对2685名被试调查分析后发现:(1)未来思维的认知和情感成分以及未来积极洞察力与PIU呈显著负相关。(2)时间洞察力是PIU的远端因素,而未来思维的认知与情感成分在两者之间起中介作用。(3)预期清晰性是预防PIU恶化的最佳干预靶点,而未来自我生动性是促使PIU改善的最佳干预靶点。研究结果对于理解PIU的心理机制和制定干预策略具有重要意义。

Abstract

With the increasing use of internet devices, the prevalence of problematic internet use (PIU) has steadily increased. PIU is a clinical psychological disorder resulting from excessive internet use, with global prevalence rates ranging from 12.6% to 67.5%. PIU increases the risk of academic difficulties, negative emotions, sleep disturbances, and aggressive behaviors. It is also associated with a disregard for long-term future considerations. Future thinking, a psychological process that involves planning and predicting future scenarios, is closely linked to the development of PIU. It encompasses psychological experiences of future scenarios, self-perception, and cognitive processing of future values and emotions. A deficiency in future thinking may lead individuals to overlook the long-term consequences of internet use, thereby increasing the risk of excessive use. The future-oriented cognition model suggests that clear future expectations lead to activities like simulation, prediction, and planning, which can enhance long-term consideration and self-control. Thus, having clear expectations about future events can enhance individuals'consideration of long-term impacts, making them more likely to reflect on the potential academic, social, and health-related risks of PIU, and promoting goal-directed behavior and self-control to mitigate current excessive internet use. However, current research on the relationship between future thinking and PIU remains limited, with most existing studies focusing on the association between individual variables and PIU. The development of PIU involves complex interactions among multiple aspects of future thinking. Therefore, understanding the interplay between different components of future thinking and PIU is crucial for developing effective interventions to mitigate PIU.
This study analyzed data from 2,685 undergraduate students across eight universities in China. The cognitive components of future thinking (i.e., episodic future thinking, future self-continuity, and delay discounting), the emotional component (i.e., anticipatory pleasure), and the individual difference component (i.e., time perspective) were measured, along with the degree of PIU. Network analysis was employed to examine the complex relationships between these variables, and simulation intervention algorithms were used to identify potential intervention targets. Spearman correlations were first calculated to generate a heat map of the correlation matrix. Network analysis was then performed with 18 factors, including PIU sub-dimensions, as nodes, using a regularized partial correlation glasso network model. Finally, an Ising network model was constructed to simulate the effects of node changes on PIU and to identify key intervention targets. The NodeIdentifyR algorithm simulated 5,000 participants, applying two types of interventions to each node in the network: (1) Alleviating intervention, which reduced the node’s original parameter values by two standard deviations to simulate improved performance, and (2) Aggravating intervention, which increased the node’s original parameter values by two standard deviations to simulate worsened performance. The “sum score” indicator was used to assess the overall effect of each intervention on the three sub-symptoms of PIU.
The results indicated that (1) Multiple dimensions of future thinking (i.e., episodic future thinking, future self-continuity, delay discounting, and anticipatory pleasure) and future positivity were significantly negatively correlated with PIU and acted as protective factors. (2) In the network model, time perspective was identified as a distal factor for PIU, with future thinking serving as a mediating factor between time perspective and PIU. (3) Clarity of anticipation was found to be the most effective intervention target for preventing the worsening of PIU symptoms, while vividness of the future self was identified as the best intervention target for improving PIU symptoms.
These findings highlight the importance of understanding the complex interactions that contribute to PIU. By focusing on the most influential ones, as identified by simulation algorithms, interventions can be more targeted and effective. Addressing key factors such as the clarity of future expectations and vividness of future self-image can help individuals better understand the long-term effects of internet use, leading to improved self-control and reduced impulsive behaviors. Training people to think more clearly about future scenarios and strengthening their connection to their future selves can help reduce PIU symptoms and prevent excessive internet use in the long term.

关键词

问题性网络使用 / 未来思维 / 时间洞察力 / 网络分析方法 / 模拟干预

Key words

problematic internet use / future thinking / time perspective / network analysis methods / simulation intervention

引用本文

导出引用
齐怀远, 李江勇, 王俊义, 罗扬眉. 未来思维与问题性网络使用的关联机制:基于网络模型的分析*[J]. 心理科学. 2025, 48(2): 435-446 https://doi.org/10.16719/j.cnki.1671-6981.20250216
Qi Huaiyuan, Li Jiangyong, Wang Junyi, Luo Yangmei. The Correlation Mechanism between Future Thinking and Problematic Network Use: An Analysis Based on Network Models[J]. Journal of Psychological Science. 2025, 48(2): 435-446 https://doi.org/10.16719/j.cnki.1671-6981.20250216

参考文献

[1] 陈诗韵, 屈笛扬, 卜禾, 梁凯欣, 张沛超, 迟新丽. (2023). 迷“网”的少年: 网瘾风险青少年的症状演化. 心理学报, 55(9), 1465-1476.
[2] 李小保, 吕厚超. (2022). 青少年时间态度与学业拖延的关系: 成就动机的中介作用. 心理科学, 45(1), 47-53.
[3] 罗扬眉, 黄希庭, 鞠恩霞, 普彬. (2010). 将来事件情节模拟的神经基础. 西南大学学报(社会科学版), 36(5), 21-27.
[4] 申俊贤, 王煜, 周春燕. (2022). 未来自我连续性问卷中文版在大学生的试测. 中国心理卫生杂志, 36(1), 73-76.
[5] 汤丹丹, 温忠麟. (2020). 共同方法偏差检验: 问题与建议. 心理科学, 43(1), 215-223.
[6] 王盼盼, 何嘉梅. (2020). 情景预见对跨期决策的影响机制. 心理学报, 52(1), 38-54.
[7] 徐岚, 陈全, 崔楠, 陆凯丽. (2019). 享受当下, 还是留待未来?——时间观对跨期决策的影响. 心理学报, 51(1), 96-105.
[8] 赵立军, 于君剑, 赵守盈. (2021). 问题性网络游戏使用青少年未来取向的助推研究. 心理科学, 44(6), 1483-1490.
[9] 中国互联网络信息中心. (2024). 第53次《中国互联网络发展状况统计报告》. https://www.cnnic.net.cn/n4/2024/0322/c88-10964.html
[10] Amlung M., Vedelago L., Acker J., Balodis I., & MacKillop J. (2017). Steep delay discounting and addictive behavior: A meta-analysis of continuous associations. Addiction, 112(1), 51-62.
[11] Atance, C. M., & O'Neill, D. K. (2001). Episodic future thinking. Trends in Cognitive Sciences, 5(12), 533-539.
[12] Beard, K. W., & Wolf, E. M. (2001). Modification in the proposed diagnostic criteria for Internet addiction. Cyberpsychology and Behavior, 4(3), 377-383.
[13] Biderman N., Bakkour A., & Shohamy D. (2020). What are memories for? The hippocampus bridges past experience with future decisions. Trends in Cognitive Sciences, 24(7), 542-556.
[14] Blanchard M. A., Roskam I., Mikolajczak M., & Heeren A. (2021). A network approach to parental burnout. Child Abuse and Neglect, 111, Article 104826.
[15] Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91-121.
[16] Borsboom D., Deserno M. K., Rhemtulla M., Epskamp S., Fried E. I., McNally R. J., & Waldorp L. J. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), Article 58.
[17] Brand M., Young K. S., Laier C., Wölfling K., & Potenza M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neuroscience and Biobehavioral Reviews, 71, 252-266.
[18] Cheng Y. S., Ko H. C., Sun C. K., & Yeh P. Y. (2021). The relationship between delay discounting and Internet addiction: A systematic review and meta-analysis. Addictive Behaviors, 114, Article 106751.
[19] Dalege J., Borsboom D., van Harreveld F., & van der Maas, H. L. J. (2017). Network analysis on attitudes: A brief tutorial. Social Psychological and Personality Science, 8(5), 528-537.
[20] Engelmann J. B., Lebreton M., Salem-Garcia N. A., Schwardmann P., & van der Weele, J. J. (2024). Anticipatory anxiety and wishful thinking. American Economic Review, 114(4), 926-960.
[21] Epskamp S., Borsboom D., & Fried E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212.
[22] Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617-634.
[23] Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: Updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67, 23-50.
[24] Fang S. L., Huang X. D., Zhang P. W., He J. Y., Luo X. W., Zhang J. H., & Wang X. (2021). Factor structure and sex invariance of the temporal experience of pleasure scale (TEPS) in Chinese university students and clinical population. BMC Psychiatry, 21(1), Article 378.
[25] Gard D. E., Gard M. G., Kring A. M., & John O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: A scale development study. Journal of Research in Personality, 40(6), 1086-1102.
[26] Göllner L. M., Ballhausen N., Kliegel M., & Forstmeier S. (2018). Delay of gratification, delay discounting and their associations with age, episodic future thinking, and future time perspective. Frontiers in Psychology, 8, Article 2304.
[27] Grant, J. B., & Walsh, E. (2016). Exploring the use of experience sampling to assess episodic thought. Applied Cognitive Psychology, 30(3), 472-478.
[28] Hallford D. J., Farrell H., & Lynch E. (2022). Increasing anticipated and anticipatory pleasure through episodic thinking. Emotion, 22(4), 690-700.
[29] Hershfield, H. E. (2011). Future self-continuity: How conceptions of the future self transform intertemporal choice. Annals of the New York Academy of Sciences, 1235(1), 30-43.
[30] Ioannidis K., Grant J. E., & Chamberlain S. R. (2022). Problematic usage of the internet and cognition. Current Opinion in Behavioral Sciences, 44, Article 101104.
[31] Jiménez S., de Montis I. A., & Garza-Villarreal E. A. (2023). Modeling vulnerability and intervention targets in the borderline personality disorder system: A network analysis of in silico and in vivo interventions. PLoS ONE, 18(7), Article e0289101.
[32] Kim J., Hong H., Lee J., & Hyun M. H. (2017). Effects of time perspective and self-control on procrastination and Internet addiction. Journal of Behavioral Addictions, 6(2), 229-236.
[33] Kaplan B. A., Amlung M., Reed D. D., Jarmolowicz D. P., McKerchar T. L., & Lemley S. M. (2016). Automating scoring of delay discounting for the 21- and 27-item monetary choice questionnaires. The Behavior Analyst, 39(2), 293-304.
[34] Kim, H. S. A., & Wohl, M. J. A. (2015). The bright side of self-discontinuity: Feeling disconnected with the past self increases readiness to change addictive behaviors (via nostalgia). Social Psychological and Personality Science, 6(2), 229-237.
[35] Kirby K. N., Petry N. M., & Bickel W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General, 128(1), 78-87.
[36] Košťál J., Klicperová-Baker M., Lukavská K., & Lukavský J. (2016). Short version of the Zimbardo Time Perspective Inventory (ZTPI-short) with and without the Future-Negative scale, verified on nationally representative samples. Time and Society, 25(2), 169-192.
[37] Kwan D., Craver C. F., Green L., Myerson J., & Rosenbaum R. S. (2013). Dissociations in future thinking following hippocampal damage: Evidence from discounting and time perspective in episodic amnesia. Journal of Experimental Psychology: General, 142(4), 1355-1369.
[38] Lai C. M., Mak K. K., Watanabe H., Ang R. P., Pang J. S., & Ho, R. C. M. (2013). Psychometric properties of the internet addiction test in Chinese adolescents. Journal of Pediatric Psychology, 38(7), 794-807.
[39] Levasseur L., Shipp A. J., Fried Y., Rousseau D. M., & Zimbardo P. G. (2020). New perspectives on time perspective and temporal focus. Journal of Organizational Behavior, 41(3), 235-243.
[40] Li, H. X. (2021). Imagining the future: future imagination training decreases delay discounting among internet addicts and non-problematic users. Frontiers in Psychology, 12, Article 731708.
[41] Li X. B., Wang C., Lyu H., Worrell F. C., & Mello Z. R. (2023). Psychometric properties of the Chinese version of the Zimbardo Time Perspective Inventory. Current Psychology, 42(16), 13547-13559.
[42] Lunansky G., Naberman J., van Borkulo C. D., Chen C., Wang L., & Borsboom D. (2022). Intervening on psychopathology networks: Evaluating intervention targets through simulations. Methods, 204, 29-37.
[43] McCue R., McCormack T., McElnay J., Alto A., & Feeney A. (2019). The future and me: Imagining the future and the future self in adolescent decision making. Cognitive Development, 50, 142-156.
[44] McKenna S., Meyer M., Gregg C., & Gerber S. (2016). s-CorrPlot: An interactive scatterplot for exploring correlation. Journal of Computational and Graphical Statistics, 25(2), 445-463.
[45] Meng S. Q., Cheng J. L., Li Y. Y., Yang X. Q., Zheng J. W., Chang X. W., & Shi J. (2022). Global prevalence of digital addiction in general population: A systematic review and meta-analysis. Clinical Psychology Review, 92, Article 102128.
[46] Olson J. A., Sandra D. A., Colucci É. S., Al Bikaii A., Chmoulevitch D., Nahas J., & Veissière S. P. (2022). Smartphone addiction is increasing across the world: A meta-analysis of 24 countries. Computers in Human Behavior, 129, Article 107138.
[47] Pan W. G., Ma Y. Z., Long Y. H., Wang Y., & Zhao Y. J. (2023). Self-control mediates the relationship between time perspective and mobile phone addiction in Chinese college students. PeerJ, 11, Article e16467.
[48] Pan Y. C., Chiu Y. C., & Lin Y. H. (2020). Systematic review and meta-analysis of epidemiology of internet addiction. Neuroscience and Biobehavioral Reviews, 118, 612-622.
[49] Przepiorka, A., & Blachnio, A. (2016). Time perspective in Internet and Facebook addiction. Computers in Human Behavior, 60, 13-18.
[50] Przepiorka A., Blachnio A., & Cudo A. (2019). The role of depression, personality, and future time perspective in internet addiction in adolescents and emerging adults. Psychiatry Research, 272, 340-348.
[51] Qi H. Y., Bi C. H., Kang Q. H., Wu Q., & Wu D. X. (2024). Far from the future: Internet addiction association with delay discounting among adolescence. International Journal of Mental Health and Addiction, 22(3), 1677-1696.
[52] Rafiepoor, A. (2019). The role of anticipation of anxiety and emotion regulation among adolescents with Internet addiction. International Journal of Applied Behavioral Sciences, 6(1), 40-46.
[53] Rutchick A. M., Slepian M. L., Reyes M. O., Pleskus L. N., & Hershfield H. E. (2018). Future self-continuity is associated with improved health and increases exercise behavior. Journal of Experimental Psychology: Applied, 24(1), 72-80.
[54] Sedikides C., Hong E. K., & Wildschut T. (2023). Self-continuity. Annual Review of Psychology, 74, 333-361.
[55] Settanni M., Marengo D., Fabris M. A., & Longobardi C. (2018). The interplay between ADHD symptoms and time perspective in addictive social media use: A study on adolescent Facebook users. Children and Youth Services Review, 89, 165-170.
[56] Shan H. D., Su H., Guo L., Li X. O., Huang C. N., Jiang H. F., & Zhao M. (2023). Network analysis of time perspective and its interaction with internet gaming disorder in college students. Computers in Human Behavior, 147, Article 107844.
[57] Sherdell L., Waugh C. E., & Gotlib I. H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. Journal of Abnormal Psychology, 121(1), 51-60.
[58] Sokol, Y., & Serper, M. (2020). Development and validation of a future self-continuity questionnaire: A preliminary report. Journal of Personality Assessment, 102(5), 677-688.
[59] Szpunar K. K., Spreng R. N., & Schacter D. L. (2014). A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18414-18421.
[60] Wölfling K., Duven E., Wejbera M., Beutel M. E., & Müller K. W. (2020). Discounting delayed monetary rewards and decision making in behavioral addictions-a comparison between patients with gambling disorder and internet gaming disorder. Addictive Behaviors, 108, Article 106446.
[61] Yang X. M., Fang Y., Wang Y. X., Liu S. R., Cai J. M., Li H. Y., & Chen Z. Y. (2024). Multidimensional stressors and depressive and anxiety symptoms in adolescents: A network analysis through simulations. Journal of Affective Disorders, 347, 364-374.
[62] Young K. S.(1998). Caught in the Net: How to recognize the signs of Internet addiction--and a winning strategy for recovery. Wiley Press.
[63] Zhou Y. H., Lv X., Wang L., Li J. Y., & Gao X. M. (2023). What increases the risk of gamers being addicted? An integrated network model of personality-emotion-motivation of gaming disorder. Computers in Human Behavior, 141, Article 107647.

基金

*本研究得到陕西省自然科学基金项目面上项目(2024JC-YBMS-147)、中央高校基本科研业务费(GK202201018)和陕西师范大学研究生领航人才培养项目(LHRCCX23224)的资助

PDF(8816 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/