基于智能体建模研究人类情感与认知的演化

段琴, 罗思阳

心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1314-1332.

PDF(1281 KB)
中文  |  English
PDF(1281 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1314-1332. DOI: 10.16719/j.cnki.1671-6981.20250603
计算建模与人工智能

基于智能体建模研究人类情感与认知的演化

  • 段琴, 罗思阳**
作者信息 +

Using Agent-Based Modeling to Study the Adaptation and Evolution of Human Emotions and Cognition*

  • Duan Qin1, Luo Siyang1
Author information +
文章历史 +

摘要

智能体建模(agent-based modeling,ABM)在研究人类情感和认知演化中的应用与潜力正在受到广泛关注。与传统的情感与认知研究方法(如理论框架、案例分析和实证数据)不同,ABM通过模拟个体智能体的行为与互动,能够在微观层面揭示情感与认知的演化过程,并观察这些过程如何在宏观层面上涌现为群体行为、社会规范和文化实践。ABM能够捕捉社会互动中的随机性和复杂性,为情感(如共情、愤怒、恐惧等)和认知(如决策、学习、问题解决等)过程的演化提供新的视角,特别是情感与认知之间的相互作用。例如,通过模拟囚徒困境等经典博弈模型,ABM展示了情感与认知如何在群体中推动合作行为的演化,比如个体通过反复互动积累经验并学习合作策略的过程以及共情通过促进个体对他人情感状态的理解与反应从而增强合作的重要作用。但是,目前ABM在情感与认知演化研究中的应用也面临若干挑战:情感与认知的复杂性使得模型建立和参数化变得困难,尤其是如何将生物学、心理学和社会因素综合进模型;如何对难以获取真实世界数据的ABM模型所生成的结果进行验证仍然是一个重要问题;模型复杂度的增加也使得ABM的计算需求和可扩展性问题也愈加突出,尤其是在模拟大规模群体或长期演化过程时,计算资源的消耗是一个重要的制约因素。随着科学技术的发展,ABM在解析人类情感与认知演化进程中的应用有很多潜在发展方向。例如,将神经生物学与心理学的数据深度融合,以增强模型的生物学与心理学基础;在复杂社会网络中实施更为精细的模拟,以捕捉社会互动的微妙与多样性;结合人工智能与机器学习的最新成果,尤其是大语言模型赋能的智能体演化模型,将为ABM注入新的活力以及推动模型在现实世界场景中的广泛应用,验证其实际效用与价值。综上所述,ABM为研究人类情感与认知的演化提供了独特的视角,不仅能够揭示微观层面的个体行为和互动,还能展示这些行为如何在宏观层面上演化为社会现象。尽管在模型复杂性、结果验证与计算资源等方面存在挑战,但随着技术的进步,ABM有望推动其公共政策、教育和公共健康等领域的实际应用,进而深化对人类行为演化机制的理解。

Abstract

This review explores the use of agent-based modeling (ABM) within the framework of study human emotion and cognition in the context of its ability to simulate complex social interactions, adaptive changes, and evolutionary processes. By representing agents and their defined environments with probabilistic interactions, ABM allows the assessment of the effects of individual behavior at the micro level on the greater social phenomena at the macro level. The review looks into the applications of ABM in portraying some of the key components of emotions and cognition—empathy, cooperation, decision making, and emotional transmission—and analyzes the problems including scalability, empirical validation, and description of sensitive emotional states. The most important conclusion is that merging ABM with information neurobiological data and artificial intelligence (AI) techniques would allow for deepening the interactions within the system and enhancing its responsiveness to stimuli. This review highlights approaches that aim to exploit the ABM methodology more fully and integrates methods from biology, neuroscience, and engineering. This integration could contribute to our understanding of the human behavior evolution and adaptation within systems relevant to policymaking, healthcare, and education.

关键词

智能体建模(agent-based modeling / ABM) 情感演化 认知演化 社会互动

Key words

agent-based modeling / emotions evolution / cognition evolution / social interactions

引用本文

导出引用
段琴, 罗思阳. 基于智能体建模研究人类情感与认知的演化[J]. 心理科学. 2025, 48(6): 1314-1332 https://doi.org/10.16719/j.cnki.1671-6981.20250603
Duan Qin, Luo Siyang. Using Agent-Based Modeling to Study the Adaptation and Evolution of Human Emotions and Cognition*[J]. Journal of Psychological Science. 2025, 48(6): 1314-1332 https://doi.org/10.16719/j.cnki.1671-6981.20250603

参考文献

[1] Abar S., Theodoropoulos G. K., Lemarinier P., & O' Hare, G. M. (2017). Agent based modelling and simulation tools: A review of the state-of-art software. Computer Science Review, 24, 13-33.
[2] Abramson L., Petranker R., Marom I., & Aviezer H. (2021). Social interaction context shapes emotion recognition through body language, not facial expressions. Emotion, 21(3), 557.
[3] Aghababaei, M., & Koliou, M. (2022). An agent-based modeling approach for community resilience assessment accounting for system interdependencies: Application on education system. Engineering Structures, 255, 113889.
[4] Ahrweiler P., Schilperoord M., Pyka A., & Gilbert N. (2015). Modelling research policy: Ex-ante evaluation of complex policy instruments. Journal of Artificial Societies and Social Simulation, 18(4), 5.
[5] An G., Mi Q., Dutta-Moscato J., & Vodovotz Y. (2009). Agent-based models in translational systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(2), 159-171.
[6] An L., Grimm V., Sullivan A., Turner Ii B. L., Malleson N., Heppenstall A., Vincenot C., Robinson D., Ye X. Y., Liu J. G., Lindkvist E., & Tang W. (2021). Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecological Modelling, 457, 109685.
[7] Anderson J. R., Bothell D., Byrne M. D., Douglass S., Lebiere C., & Qin Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036.
[8] Anderson R. M., Heesterbeek H., Klinkenberg D., & Hollingsworth T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The lancet, 395(10228), 931-934.
[9] Arnold, V. X., & Young, S. D. (2025). The potential of wearable sensors for detecting cognitive rumination: A scoping review. Sensors, 25(3), 654.
[10] Arthur, W. B. (2021). Foundations of complexity economics. Nature Reviews Physics, 3(2), 136-145.
[11] Axtell, R. L., & Farmer, J. D. (2025). Agent-based modeling in economics and finance: Past, present, and future. Journal of Economic Literature, 63(1), 197-287.
[12] Bai Y., Peng Z. H., Wei F. Y., Jin Z., Wang J. J., Xu X. M., Zhang X. Y., Xu J., Ren Z. X., Lu B. L., Wang Z. J., Xu J. G., & Huang S. Z. (2023). Study on the COVID-19 epidemic in mainland China between November 2022 and January 2023, with prediction of its tendency. Journal of Biosafety and Biosecurity, 5(1), 39-44.
[13] Bail, C. A. (2024). Can generative AI improve social science? Proceedings of the National Academy of Sciences, 121(21), e2314021121.
[14] Bankes, S. C. (2002). Agent-based modeling: A revolution? Proceedings of the National Academy of Sciences, 99(3), 7199-7200.
[15] Bayne T., Brainard D., Byrne R. W., Chittka L., Clayton N., Heyes C., C., Mather J., Ölveczky B., Shadlen M., Suddendorf T., & Webb B. (2019). What is cognition? Current Biology, 29(13), R608-R615.
[16] Bergner Y., Andrews J. J., Zhu M., & Gonzales J. E. (2016). Agent-based modeling of collaborative problem solving. ETS Research Report Series, 2016(2), 1-14.
[17] Bertani F., Ponta L., Raberto M., Teglio A., & Cincotti S. (2021). The complexity of the intangible digital economy: An agent-based model. Journal of Business Research, 129, 527-540.
[18] Bhui R., Lai L., & Gershman S. J. (2021). Resource-rational decision making. Current Opinion in Behavioral Sciences, 41, 15-21.
[19] Blanchard, D. C. (2018). Risk assessment: at the interface of cognition and emotion. Current Opinion in Behavioral Sciences, 24, 69-74.
[20] Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(3), 7280-7287.
[21] Bruch, E., & Atwell, J. (2015). Agent-based models in empirical social research. Sociological Methods and Research, 44(2), 186-221.
[22] Brusatin S., Padoan T., Coletta A., Delli Gatti D., & Glielmo A. (2024). Simulating the economic impact of rationality through reinforcement learning and agent-based modelling. In Proceedings of the 5th ACM International Conference on AI in Finance. New York.
[23] Cañas J., Quesada J., Antolí A., & Fajardo I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46(5), 482-501.
[24] Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194-1197.
[25] Chiao, J. Y., & Blizinsky, K. D. (2010). Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 529-537.
[26] Cosmides, L., & Tooby, J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annual Review of Psychology, 64(1), 201-229.
[27] de C Williams, A. C., Gallagher E., Fidalgo A. R., & Bentley P. J. (2016). Pain expressiveness and altruistic behavior: an exploration using agent-based modeling. Pain, 157(3), 759-768.
[28] Doan T., Ong D. C., & Wu Y. (2024). Emotion understanding as third-person appraisals: Integrating appraisal theories with developmental theories of emotion. Psychological Review, 132(1), 130-153.
[29] Doboli, A., & Doboli, S. (2021). A novel agent-based, evolutionary model for expressing the dynamics of creative open-problem solving in small groups. Applied Intelligence, 51, 2094-2127.
[30] Duan Q., Chen S., Yuan H., Zhang Y., & Luo S. (2025). The psychological impact of reopening after COVID-19 lockdowns in China: Threat perception, affect and moral conflict. Social Science and Medicine, 365, 117611.
[31] Duan Q., Fan L., Zhou Y., Luo S., & Han S. (2024). The oxytocinergic system and racial ingroup bias in empathic neural activity. Neuropharmacology, 261, 110151.
[32] Fan R., Xu K., & Zhao J. (2018). An agent-based model for emotion contagion and competition in online social media. Physica A: Statistical Mechanics And Its Applications, 495, 245-259.
[33] Gao M., Wang Z., Wang K., Liu C., & Tang S. (2022). Forecasting elections with agent-based modeling: Two live experiments. PloS ONE, 17(6), e0270194.
[34] Gelfand M. J., Jackson J. C., Pan X., Nau D., Pieper D., Denison E., Dagher M., Van Lange, P. A. M., Chiu C. Y., & Wang M. (2021). The relationship between cultural tightness-looseness and COVID-19 cases and deaths: A global analysis. The Lancet Planetary Health, 5(3), e135-e144.
[35] Gigerenzer G., Reb J., & Luan S. (2022). Smart heuristics for individuals, teams, and organizations. Annual Review of Organizational Psychology and Organizational Behavior, 9(1), 171-198.
[36] Gilbert, N. (2019). Agent-based models. Sage Publications.
[37] Goldberg E. E., Lin Q., Romero-Severson E. O., & Ke R. (2023). Swift and extensive Omicron outbreak in China after sudden exit from “zero-COVID” policy. Nature Communications, 14(1), 3888.
[38] Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424-430.
[39] Grimm V., Berger U., DeAngelis D. L., Polhill J. G., Giske J., & Railsback S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760-2768.
[40] Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., & DeAngelis D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1-2), 115-126.
[41] Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W. M., Railsback S. F., Thulke H. H., Weiner J., Wiegand T., & DeAngelis D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987-991.
[42] Han Q., Zheng B., Agostini M., Bélanger J. J., Gützkow B., Kreienkamp J., Reitsema A. M., van Breen J. A., Leander N. P., & PsyCorona Collaboration. (2021). Associations of risk perception of COVID-19 with emotion and mental health during the pandemic. Journal of Affective Disorders, 284, 247-255.
[43] Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638-647.
[44] Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
[45] Huang G., Yu X., Long Q., Huang L., & Luo S. (2022). The impact of economic freedom on COVID-19 pandemic control: The moderating role of equality. Globalization and Health, 18(1), 15.
[46] Huang L., Sun Y., & Luo S. (2022). The impact of individualism on the efficiency of epidemic control and the underlying computational and psychological mechanisms. Acta Psychologica Sinica, 54(5), 497.
[47] Ionescu Ș., Delcea C., Chiriță N., & Nica I. (2024). Exploring the use of artificial intelligence in agent-based modeling applications: A bibliometric study. Algorithms, 17(1), 21.
[48] Irastorza-Valera L., Benitez J. M., Montáns F. J., & Saucedo-Mora L. (2023). An agent based model (ABM) to reproduce the boolean logic behaviour of neuronal self organized communities through pulse delay modulation and generation of logic gates. bioRxiv
[49] Izard, C. E. (2011). Forms and functions of emotions: Matters of emotion-cognition interactions. Emotion Review, 3(4), 371-378.
[50] Jackson J. C., Rand D., Lewis K., Norton M. I., & Gray K. (2017). Agent-based modeling: A guide for social psychologists. Social Psychological and Personality Science, 8(4), 387-395.
[51] Jager, W. (2021). Using agent-based modelling to explore behavioural dynamics affecting our climate. Current Opinion in Psychology, 42, 133-139.
[52] Kato, J. S., & Sbicca, A. (2022). Bounded rationality, group formation and the emergence of trust: An agent-based economic model. Computational Economics, 60(2), 571-599.
[53] Klabunde, A., & Willekens, F. (2016). Decision-making in agent-based models of migration: State of the art and challenges. European Journal of Population, 32, 73-97.
[54] Kornreich C., Delle-Vigne D., Knittel J., Nerincx A., Campanella S., Noel X., Hanak C., Verbanck P., & Ermer E. (2011). Impaired conditional reasoning in alcoholics: a negative impact on social interactions and risky behaviors? Addiction, 106(5), 951-959.
[55] Laden A. S.(2012). Reasoning: A social picture. Oxford University Press.
[56] Lamarins A., Fririon V., Folio D., Vernier C., Daupagne L., Labonne J., Buoro M., Lefèvre F., Piou C., & Oddou-Muratorio S. (2022). Importance of interindividual interactions in eco-evolutionary population dynamics: The rise of demo-genetic agent-based models. Evolutionary Applications, 15(12), 1988-2001.
[57] Leoni, S. (2022). An agent-based model for tertiary educational choices in italy. Research in Higher Education, 63(5), 797-824.
[58] Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1, 431-436.
[59] Levy N., Klein I., & Ben-Elia E. (2018). Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach. Research in Transportation Economics, 68, 46-55.
[60] Li H., Chong Y. Q., Stepputtis S., Campbell J., Hughes D., Lewis M., & Sycara K. (2023). Theory of mind for multi-agent collaboration via large language models. ArXiv.
[61] Lindquist K. A., Jackson J. C., Leshin J., Satpute A. B., & Gendron M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1(11), 669-681.
[62] Lu P., Chen D., Zhang G., & Ding J. (2023). Online attention dynamics: The triangle framework of theory, big data and simulations. Expert Systems with Applications, 233, 120900.
[63] Lu P., Zhang Z., Onyebuchi C. H., & Zheng L. (2024). Agent-based modeling of high-rise building fires reveals self-rescue behaviors and better fire protection designs. Engineering Applications of Artificial Intelligence, 127, 107401.
[64] Lutz, C., & White, G. M. (1986). The anthropology of emotions. Annual Review of Anthropology, 15(1), 405-436.
[65] Lyon P., Keijzer F., Arendt D., & Levin M. (2021). Reframing cognition: getting down to biological basics. Philosophical Transactions of the Royal Society B, 376(1820), 20190750.
[66] Macal, C. M. (2010). To agent-based simulation from system dynamics. In Proceedings of the 2010 winter simulation conference. Baltimore, Maryland.
[67] Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference. Piscataway, NJ.
[68] Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. In Proceedings of the 2009 winter simulation conference. Phoenix, Arizona.
[69] Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28(1), 143-166.
[70] Marean, C. W. (2015). An evolutionary anthropological perspective on modern human origins. Annual Review of Anthropology, 44(1), 533-556.
[71] Melde C., Berg M. T., & Esbensen F. A. (2016). Fear, social interactions, and violence mitigation. Justice Quarterly, 33(3), 481-509.
[72] Mozahem, N. A. (2022). Social cognitive theory and women' s career choices: An agent—based model simulation. Computational and Mathematical Organization Theory, 28(1), 1-26.
[73] Murić G., Tregubov A., Blythe J., Abeliuk A., Choudhary D., Lerman K., & Ferrara E. (2022). Large-scale agent-based simulations of online social networks. Autonomous Agents and Multi-Agent Systems, 36(2), 38.
[74] Nesse, R. M., & Ellsworth, P. C. (2009). Evolution, emotions, and emotional disorders. American Psychologist, 64(2), 129.
[75] Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560-1563.
[76] Ochsner, K. N., & Phelps, E. (2007). Emerging perspectives on emotion-cognition interactions. Trends in Cognitive Sciences, 11(8), 317-318.
[77] Olsson, A., & Phelps, E. A. (2007). Social learning of fear. Nature Neuroscience, 10(9), 1095-1102.
[78] Ortony A., Clore G. L., & Collins, A. (2022). The cognitive structure of emotions. Cambridge University Press..
[79] Pan X., Hsiao V., Nau D. S., & Gelfand M. J. (2024). Explaining the evolution of gossip. Proceedings of the National Academy of Sciences, 121(9), e2214160121.
[80] Park J. S., O'Brien J., Cai C. J., Morris M. R., Liang P., & Bernstein M. S. (2023). Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual acm symposium on user interface software and technology Francisco, CA.
[81] Perello-Moragues A., Noriega P., Popartan L. A., & Poch M. (2019). On three ethical aspects involved in using agent-based social simulation for policy-making. In Conference of the European Social Simulation Association. Mainz.
[82] Railsback S. F.,& Grimm, V. (2019). Agent-based and individual-based modeling: A practical introduction. Princeton University Press.
[83] Retzlaff C. O., Burbach L., Kojan L., Halbach P., Nakayama J., Ziefle M., & Calero Valdez A. (2022). Fear, behaviour, and the COVID-19 pandemic: A city-scale agent-based model using socio-demographic and spatial map data. Journal of Artificial Societies and Social Simulation, 25(1), 1-3.
[84] Ritter F. E., Tehranchi F., & Oury J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.
[85] Rumble A. C., Van Lange P. A., & Parks C. D. (2010). The benefits of empathy: When empathy may sustain cooperation in social dilemmas. European Journal of Social Psychology, 40(5), 856-866.
[86] Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318(5850), 598-602.
[87] Silver D., Huang A., Maddison C. J., Guez A., Sifre L., Van Den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K.,Graepel T., & Hassabis D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.
[88] Smith, E. R., & Conrey, F. R. (2007). Agent-based modeling: A new approach for theory building in social psychology. Personality and Social Psychology Review, 11(1), 87-104.
[89] Soheilypour, M., & Mofrad, M. R. (2018). Agent-based modeling in molecular systems biology. BioEssays, 40(7), 1800020.
[90] Soltani, A., & Koechlin, E. (2022). Computational models of adaptive behavior and prefrontal cortex. Neuropsychopharmacology, 47(1), 58-71.
[91] Sweller, J. (2022). The role of evolutionary psychology in our understanding of human cognition: Consequences for cognitive load theory and instructional procedures. Educational Psychology Review, 34(4), 2229-2241.
[92] Sznajd-Weron K., Jȩdrzejewski A., & Kamińska B. (2024). Toward understanding of the social hysteresis: Insights from agent-based modeling. Perspectives on Psychological Science, 19(2), 511-521.
[93] Tria F., Loreto V., Servedio V. D. P., & Strogatz S. H. (2014). The dynamics of correlated novelties. Scientific Reports, 4(1), 5890.
[94] Trivedi, A., & Rao, S. (2018). Agent-based modeling of emergency evacuations considering human panic behavior. IEEE Transactions on Computational Social Systems, 5(1), 277-288.
[95] Van Dijk, E., & De Dreu, C. K. (2021). Experimental games and social decision making. Annual Review of Psychology, 72(1), 415-438.
[96] Van Haeringen E. S., Gerritsen C., & Hindriks K. V. (2023). Emotion contagion in agent-based simulations of crowds: A systematic review. Autonomous Agents and Multi-Agent Systems, 37(1), 6.
[97] Vargas-Pérez V. A., Mesejo P., Chica M., & Cordón O. (2023). Deep reinforcement learning in agent-based simulations for optimal media planning. Information Fusion, 91, 644-664.
[98] Vermeulen, B., & Pyka, A. (2016). Agent-based modeling for decision making in economics under uncertainty. Economics, 10(1), 20160006.
[99] Wang Y., Liu Z., Liu T., Samsonovich A. V., & Klimov V. V. (2024). On the logic of agent' s emotions. Cognitive Systems Research, 88, 101281.
[100] Wilensky U.,& Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. MIT Press.
[101] Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.
[102] Yuan H., Che Z., Li S., Zhang Y., Hu X., & Luo S. (2024). The high dimensional psychological profile and cultural bias of ChatGPT. ArXiv.
[103] Yuan H., Long Q., Huang G., Huang L., & Luo S. (2022). Different roles of interpersonal trust and institutional trust in COVID-19 pandemic control. Social Science and Medicine, 293, 114677.
[104] Zhang W., Valencia A., & Chang N. B. (2021). Synergistic integration between machine learning and agent-based modeling: A multidisciplinary review. IEEE Transactions on Neural Networks and Learning Systems, 34(5), 2170-2190.
[105] Zhang Y., Li S., Yuan X., Yuan H., Che Z., & Luo, S.
(in press). The high dimensional psychological profile of ChatGPT. Science China Technological Sciences.
[106] Zhu K., Du H., Hong Z., Yang X., Guo S., Wang Z., & You J. (2025). MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents. ArXiv.

基金

*本研究得到中国国家自然科学基金项目(项目编号:32071081,32371125)的资助

PDF(1281 KB)

Accesses

Citation

Detail

段落导航
相关文章

/