公平分配演化的多要素决策过程模型*

陆春雷, 李星, 郑辉, 汪敏, 赵晓征, 高子媛, 李京晶, 周晓林

心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1384-1393.

PDF(1409 KB)
中文  |  English
PDF(1409 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1384-1393. DOI: 10.16719/j.cnki.1671-6981.20250608
计算建模与人工智能

公平分配演化的多要素决策过程模型*

  • 陆春雷1, 李星2, 郑辉3, 汪敏4, 赵晓征1, 高子媛1, 李京晶1, 周晓林**1,5
作者信息 +

A Multi-Factor Decision-Making Process Model for the Evolution of Fair Distribution

  • Lu Chunlei1, Li Xing2, Zheng Hui3, Wang Min4, Zhao Xiaozheng1, Gao Ziyuan1, Li Jingjing1, Zhou Xiaolin1,5
Author information +
文章历史 +

摘要

公平地分配合作产生的共同资源是合作关系得以维系的重要前提。关于人类如何演化出公平分配资源的偏好,大量研究借助基于主体的模拟进行了探讨。然而,已有研究往往单独考察影响公平分配演化的个别要素,难以完整阐明其演化机理。生物市场理论有望整合公平演化的多个要素,它假定生物体之间的互动类似于市场经济中的交易行为。基于该理论,论文先归纳出公平分配演化的四个关键要素:声誉、合作伙伴选择、外部选项和认知共情。而后,论文整合这些要素,提出公平分配演化的决策过程模型。模拟结果表明,该模型能够模拟公平分配偏好和行为的演化。最后,论文讨论了该模型的解释力,展望了公平分配演化后续值得研究的方向。

Abstract

The fair distribution of jointly acquired resources is a fundamental prerequisite for maintaining cooperative relationships across human societies. Although numerous studies have used agent-based simulations (ABS) to investigate how humans evolved preferences for fair resource allocation, they often examine individual factors in isolation, failing to provide a comprehensive understanding of the underlying evolutionary mechanisms. The biological market theory, which posits that interactions between organisms resemble trading behaviors observed in economic markets, offers a promising framework for integrating these disparate elements into a coherent whole.
Building on this theory, we identify four critical factors in the evolution of fair distribution, including reputation, partner choice, outside options, and cognitive empathy. Reputation refers to the awareness of other individuals' decision-making preferences. Partner choice involves selecting whom to cooperate with. Outside options denote the expected benefits from cooperating with alternative agents. Cognitive empathy encompasses understanding and considering the cognitive decision-making processes of others. Extensive ABS research has shown that reputation is fundamental to the evolution of fair distribution. Partner choice allows agents to select partners, driven by the presence of better outside options. Cognitive empathy often evolves concurrently with fair distribution and can further promote its development.
We subsequently integrate these four interconnected elements to propose a comprehensive decision-making process model that captures the evolutionary dynamics of fair distribution. This model formally describes the cognitive calculus through which two agents evaluate whether to maintain their current cooperative relationship or seek alternative partnerships. Specifically, the decision-making process involves three sequential but interdependent considerations: (1) Whether there are other potential partners who could provide significantly greater cooperative benefits; (2) Whether the anticipated incremental benefits of cooperating with alternative partners sufficiently outweigh the costs associated with switching partners; and (3) Whether these considerations would be deemed valid and compelling from the perspective of the current partner, thereby creating reciprocal expectations. This sophisticated decision-making process model inherently incorporates all four identified factors, demonstrating their functional interdependence. Simulation results demonstrate that this model effectively captures the emergence of fair distribution preference and behavior. Further simulation analysis verifies the model's explanatory power and highlights the adaptive functions of cognitive empathy and the consideration of multiple outside options within the framework of the biological market theory.
Looking ahead, we identify two key directions for future research. First, we suggest moving beyond simple equality-based norms to explore the evolution of more nuanced fairness forms, such as proportional distribution based on contribution or need, and various forms of distributive justice, including liberal egalitarianism. This will help us better capture the complexity of fairness in real-world contexts. Second, while our current simulation effectively models cognitive decision-making processes in the evolution of fair distribution, future work should integrate evolutionary simulations with psychological experiments, computational modeling, and brain imaging studies. This integration will elucidate how our evolved biology shapes fair-sharing behavior and provide a more complete link between evolutionary theory, cognitive mechanisms, and observable actions.
In this review, we explored the evolution of fair distribution using ABS technology. Grounded in biological market theory, we highlighted the key roles of reputation, partner selection, outside options, and cognitive empathy in driving fair distribution. We also integrated these elements into a model that captures the cognitive decision-making process of agents and demonstrated how biological market theory can unify multiple factors in the evolution of fair distribution. We believe this model offers a comprehensive understanding of the evolutionary mechanisms underlying fair distribution and may inform the development and implementation of fair distribution policies.

关键词

公平 / 资源分配 / 演化机理 / 基于主体的模拟 / 生物市场理论

Key words

fairness / resource distribution / evolutionary mechanism / agent-based simulations / biological market theory

引用本文

导出引用
陆春雷, 李星, 郑辉, 汪敏, 赵晓征, 高子媛, 李京晶, 周晓林. 公平分配演化的多要素决策过程模型*[J]. 心理科学. 2025, 48(6): 1384-1393 https://doi.org/10.16719/j.cnki.1671-6981.20250608
Lu Chunlei, Li Xing, Zheng Hui, Wang Min, Zhao Xiaozheng, Gao Ziyuan, Li Jingjing, Zhou Xiaolin. A Multi-Factor Decision-Making Process Model for the Evolution of Fair Distribution[J]. Journal of Psychological Science. 2025, 48(6): 1384-1393 https://doi.org/10.16719/j.cnki.1671-6981.20250608

参考文献

[1] 吴小燕, 付洪宇, 张腾飞, 鲍东琪, 胡捷, 朱睿达, 封春亮, 古若雷, 刘超. (2024). 共赢促进合作的认知计算机制: 互惠中积极期望与社会奖赏的作用. 心理学报, 56(9), 1299-1312.
[2] Andre, J. B., & Baumard, N. (2011a). The evolution of fairness in a biological market. Evolution, 65(5), 1447-1456.
[3] Andre, J. B., & Baumard, N. (2011b). Social opportunities and the evolution of fairness. Journal of Theoretical Biology, 289, 128-135.
[4] Baumard, N. (2016). The origins of fairness: How evolution explains our moral nature. Oxford University Press.
[5] Baumard N., Andre J. B., & Sperber D. (2013). A mutualistic approach to morality: The evolution of fairness by partner choice. Behavioral and Brain Sciences, 36(1), 59-78.
[6] Bliege Bird R., Ready E., & Power E. A. (2018). The social significance of subtle signals. Nature Human Behaviour, 2(7), 452-457.
[7] Brosnan, S. F., & De Waal, F. B. M. (2014). Evolution of responses to (un)fairness. Science, 346(6207), 1251776.
[8] Cappelen, A. W., & Tungodden, B. (2017). Fairness and the proportionality principle. Social Choice and Welfare, 49, 709-719.
[9] Chiang, Y. S. (2008). A path toward fairness: Preferential association and the evolution of strategies in the ultimatum game. Rationality and Society, 20(2), 173-201.
[10] Cushman, F. (2023). Computational social psychology. Annual Review of Psychology, 75, 625-652.
[11] DeAngelis, D. L., & Mooij, W. M. (2005). Individual-based modeling of ecological and evolutionary processes. Annual Review of Ecology Evolution Systematics, 36, 147-168.
[12] Debove S., Andre J. B., & Baumard N. (2015). Partner choice creates fairness in humans. Proceedings of the Royal Society B: Biological Sciences, 282(1808), 20150392.
[13] Debove S., Baumard N., & Andre J. B. (2015). Evolution of equal division among unequal partners. Evolution, 69(2), 561-569.
[14] Debove S., Baumard N., & Andre J. B. (2016). Models of the evolution of fairness in the ultimatum game: A review and classification. Evolution and Human Behavior, 37(3), 245-254.
[15] Debove S., Baumard N., & Andre J. B. (2017). On the evolutionary origins of equity. PLoS ONE, 12(3), e0173636.
[16] Deng L., Zhang X., & Wang C. (2021). Coevolution of spatial ultimatum game and link weight promotes fairness. Applied Mathematics and Computation, 392, 125698.
[17] Efferson C., Bernhard H., Fischbacher U., & Fehr E. (2024). Super-additive cooperation. Nature, 626, 1034-1041.
[18] Engel, C. (2011). Dictator games: A meta study. Experimental Economics, 14(4), 583-610.
[19] Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41-60.
[20] Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. Quarterly Journal of Economics, 114(3), 817-868.
[21] Feng C., Luo Y. J., & Krueger F. (2015). Neural signatures of fairness-related normative decision making in the ultimatum game: A coordinate-based meta-analysis. Human Brain Mapping, 36(2), 591-602.
[22] Fu F., Hauert C., Nowak M. A., & Wang L. (2008). Reputation-based partner choice promotes cooperation in social networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 78(2), 026117.
[23] Gao J., Li Z., Wu T., & Wang L. (2011). The coevolutionary ultimatum game. Europhysics Letters, 93(4), 48003.
[24] Gavrilets, S. (2012). On the evolutionary origins of the egalitarian syndrome. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14069-14074.
[25] Geoffroy F., Baumard N., & André J. B. (2019). Why cooperation is not running away. Journal of Evolutionary Biology, 32(10), 1069-1081.
[26] Gurven, M. (2004). To give and to give not: The behavioral ecology of human food transfers. Behavioral and Brain Sciences, 27, 543-559.
[27] Güth W., Schmittberger R., & Schwarze B. (1982). An experimental analysis of ultimatum bargaining. Journal of Economic Behavior and Organization, 3(4), 367-388.
[28] Hamann K., Warneken F., Greenberg J. R., & Tomasello M. (2011). Collaboration encourages equal sharing in children but not in chimpanzees. Nature, 476(7360), 328-331.
[29] Hauser O. P., Hilbe C., Chatterjee K., & Nowak M. A. (2019). Social dilemmas among unequals. Nature, 572(7770), 524-527.
[30] Henrich, J., & Muthukrishna, M. (2021). The origins and psychology of human cooperation. Annual Review of Psychology, 72, 207-240.
[31] Jordan J. J., Hoffman M., Bloom P., & Rand D. G. (2016). Third-party punishment as a costly signal of trustworthiness. Nature, 530(7591), 473-476.
[32] Knez, M. J., & Camerer, C. F. (1995). Outside options and social comparison in three-player ultimatum game experiments. Games and Economic Behavior, 10(1), 65-94.
[33] Konow, J. (2000). Fair shares: Accountability and cognitive dissonance in allocation decisions. American Economic Review, 90(4), 1072-1091.
[34] Masuda, N., & Santos, F. C. (2019). A mathematical look at empathy. eLife, 8, e47036.
[35] McAuliffe K., Blake P. R., Steinbeis N., & Warneken F. (2017). The developmental foundations of human fairness. Nature Human Behaviour, 1(2), 0042.
[36] Nash, J. (1953). Two-person cooperative games. Econometrica: Journal of the Econometric Society, 21, 128-140.
[37] Noë, R., & Hammerstein, P. (1994). Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology Sociobiology, 35(1), 1-11.
[38] Noë, R., & Hammerstein, P. (1995). Biological markets. Trends in Ecology, 108, 336-339.
[39] Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560-1563.
[40] Nowak M. A., Page K. M., & Sigmund K. (2000). Fairness versus reason in the ultimatum game. Science, 289(5485), 1773-1775.
[41] Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 1291-1298.
[42] Page, K. M., & Nowak, M. A. (2002). Empathy leads to fairness. Bulletin of Mathematical Biology, 64(6), 1101-1116.
[43] Radzvilavicius A. L., Stewart A. J., & Plotkin J. B. (2019). Evolution of empathetic moral evaluation. eLife, 8, 44269.
[44] Railsback S. F., Lytinen S. L., & Jackson S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82(9), 609-623.
[45] Rand D. G., Tarnita C. E., Ohtsuki H., & Nowak M. A. (2013). Evolution of fairness in the one-shot anonymous ultimatum game. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2581-2586.
[46] Roberts, G., & Barrett, L. (2020). Honest signaling of cooperative intentions. Behavioral Ecology, 31(4), 922-932.
[47] Roemer J. E.(1998). Equality of opportunity. Princeton University Press..
[48] Sanfey A. G., Rilling J. K., Aronson J. A., Nystrom L. E., & Cohen J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 1755-1758.
[49] Sinatra R., Iranzo J., Gómez-Gardeñes J., Floría L. M., Latora V., & Moreno Y. (2009). The ultimatum game in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 9. P09012.
[50] Starmans C., Sheskin M., & Bloom P. (2017). Why people prefer unequal societies. Nature Human Behaviour, 1(4), 0082.
[51] Szolnoki A., Perc M., & Szabo G. (2012a). Accuracy in strategy imitations promotes the evolution of fairness in the spatial ultimatum game. Europhysics Letters, 100(2), 28005.
[52] Szolnoki A., Perc M., & Szabo G. (2012b). Defense mechanisms of empathetic players in the spatial ultimatum game. Physical Review Letters, 109(7), 078701.
[53] Takesue, H. (2017). Partner selection and emergence of the merit-based equity norm. Journal of Theoretical Biology, 416, 45-51.
[54] Tamura, K., & Takikawa, H. (2019). Modelling the emergence of an egalitarian society in the n-player game framework. Journal of Theoretical Biology, 461, 1-7.
[55] Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547.
[56] Yang Z., Li Z., Wu T., & Wang L. (2015). Effects of partner choice and role assignation in the spatial ultimatum game. EPL (Europhysics Letters), 109(4), 40013.
[57] Yu H., Gao X., Shen B., Hu Y., & Zhou X. (2024). A levels-of-analysis framework for studying social emotions. Nature Reviews Psychology, 3(3), 198-213.
[58] Zhang Y., Liu J., & Li, A. (2019). Effects of empathy on the evolutionary dynamics of fairness in group-structured systems. Complexity, 2019, 1-13.
[59] Zheng L., Li Y., Zhou J., & Li Y. (2022). The effect of celebrity on the evolution of fairness in the ultimatum game. Physica A: Statistical Mechanics and its Applications, 585, 126326.

基金

*本研究得到科技创新 2030 项目(2021ZD0200500)的资助

PDF(1409 KB)

Accesses

Citation

Detail

段落导航
相关文章

/