自动化情绪调节对抑郁症状的干预及作用机制*

李亚琴, 袁加锦

心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1516-1526.

PDF(1001 KB)
中文  |  English
PDF(1001 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (6) : 1516-1526. DOI: 10.16719/j.cnki.1671-6981.20250618
理论与史

自动化情绪调节对抑郁症状的干预及作用机制*

  • 李亚琴, 袁加锦**
作者信息 +

Intervention Effects of Automatic Emotion Regulation on Depressive Symptoms and Mechanisms

  • Li Yaqin, Yuan Jiajin
Author information +
文章历史 +

摘要

抑郁的核心认知特征之一是认知努力匮乏和情绪调节困难。自动化情绪调节相较于有意情绪调节不消耗或消耗较少的认知资源,因此被应用于抑郁症状的干预。然而,其干预效果尚无定论。本文整合以往研究发现,自动化情绪调节在干预抑郁症状方面具有一定成效,且相关认知过程(如注意、记忆)及眶额叶皮层、杏仁核、丘脑、前扣带回、纹状体和梭状回等区域的神经活动可能是潜在机制。个体差异性和自动化情绪调节类型也可能影响干预效果。未来应重点探讨自动化情绪调节在抑郁干预中的作用机制,考虑个体差异性的影响,考察其持续性和泛化效应以提高干预的生态效度,并进行策略优化。上述工作将有助于了解自动化情绪调节干预抑郁症状的全貌,促进其精准干预。

Abstract

One of the core cognitive features of depression is a lack of cognitive effort and difficulty in emotion regulation. Given that voluntary emotion regulation consumes significant cognitive resources, it may be less effective in downregulating depressive symptoms. Considering that automatic emotion regulation (AER) can reduce negative emotional experiences while consuming little or no cognitive resources, researchers have employed this approach as an intervention for depression. However, its effectiveness remains inconclusive. Therefore, this study systematically reviews previous research to explore the intervention effects of automatic emotion regulation and to examine its underlying mechanisms. Specifically, it first summarizes the intervention effects of automatic emotion regulation on depressive symptoms, explores the underlying mechanisms involved in these effects, and proposes new perspectives based on the findings.
This study suggests that automatic emotion regulation is an effective intervention for depressive symptoms. Moreover, cognitive processes such as attention and memory, as well as neural activities in brain regions including the orbitofrontal cortex, amygdala, and anterior cingulate gyrus, might serve as key neural and psychological mechanisms.
Future research should further investigate the roles of these regions in automatic emotion regulation for depressive symptoms. It is also important to consider individual differences that may affect intervention outcomes, particularly factors such as age, gender, and the severity of depressive symptoms. A substantial body of research suggests that these variables may influence intervention effectiveness. However, the specific ways in which age, gender, and the severity of depressive symptoms affect intervention outcomes remain unclear and require further exploration.
In addition, future research should focus on the sustainability and generalization of automatic emotion regulation. The sustainability of AER refers to its capacity to exert lasting regulatory effects on negative emotions over time. The generalization effect of AER refers to the extension of regulation from specified to unspecified situations. Although the sustainability and generalization effects of automatic emotion regulation have been demonstrated in healthy populations, they have not been thoroughly examined in individuals with depression. Future studies should address this gap, including among patients with comorbid anxiety and depression.
Nonetheless, numerous studies exploring automatic emotion regulation for depression have been conducted in laboratory settings, which limits their ecological validity. Thus, it is crucial to improve the ecological validity of automatic emotion regulation for depressive intervention. For instance, depressive individuals with impaired error monitoring have more difficulty coping with errors during uncertain situations, which potentially exacerbates their depressive symptoms. Therefore, understanding how depressive individuals cope with errors and regulate emotions in uncertain contexts is particularly important. However, no studies to date have examined error-processing characteristics of depressed individuals in uncertain situations and assessed intervention effectiveness. Future studies should address this gap. In addition, since automatic emotion regulation can serve as a potential intervention for depressive symptoms, it is important to examine its effects on depressive individuals in uncertain situations to enhance ecological validity. Furthermore, some studies have suggested that the integration of multiple psychotherapies may be more helpful for the intervention and treatment of depression. Thus, combining automatic emotion regulation with cognitive behavioral therapy or acceptance and commitment therapy may be a more effective intervention for depression.
Finally, future studies should compare the intervention effects of various types of automatic emotion regulation strategies. Specifically, previous studies have primarily compared automatic emotion regulation with voluntary emotion regulation and control conditions, without examining differences among various AER strategies. In this regard, future studies should explore this, such as comparing strategies based on implementation intention with those based on goal priming. On the other hand, it is also necessary to compare the regulatory efficacy of different strategies in a specific form of automatic emotion regulation, such as comparing the effect of cognitive reappraisal and attentional distraction in the form of goal priming. These will contribute to a comprehensive understanding of automatic emotion regulation for depression interventions.

关键词

自动化情绪调节 / 抑郁症状 / 作用机制 / 靶向干预 / 干预效果

Key words

automatic emotion regulation / depressive symptoms / mechanisms / targeted intervention / intervention effectiveness

引用本文

导出引用
李亚琴, 袁加锦. 自动化情绪调节对抑郁症状的干预及作用机制*[J]. 心理科学. 2025, 48(6): 1516-1526 https://doi.org/10.16719/j.cnki.1671-6981.20250618
Li Yaqin, Yuan Jiajin. Intervention Effects of Automatic Emotion Regulation on Depressive Symptoms and Mechanisms[J]. Journal of Psychological Science. 2025, 48(6): 1516-1526 https://doi.org/10.16719/j.cnki.1671-6981.20250618

参考文献

[1] 陈圣栋. (2020). 自动化负性情绪调节的认知-神经机制以及在抑郁人群中的应用 (博士学位论文). 西南大学, 重庆.
[2] 高伟, 陈圣栋, 龙泉杉, 杨洁敏, 袁加锦. (2018). 情绪调节研究方法的蜕变: 从有意情绪调节到自动化情绪调节. 科学通报, 63(4), 415-424.
[3] 李红, 袁加锦. (2018). 无意识注意分散对抑郁人群的情绪调节效应. 科学通报, 63(20), 2057-2070.
[4] 李西营, 姬玲玲, 邵景进, 申继亮, 胡卫平, 张文海. (2017). 自动化情绪调节中存在积极效应吗:来自ERPs的证据. 心理科学, 40(1), 22-28.
[5] 李亚琴, 代佳佳, 高伟, 袁加锦. (2025). 基于执行意图的认知重评对负性情绪的持续调节效应:纵向脑电证据. 心理学报, 57(9), 1572-1588.
[6] 马伟娜, 桑标, 姚雨佳. (2010). 自动化情绪调节及其神经基础的研究概述. 心理科学, 33(4), 904-906.
[7] 秦浩方, 黄蓉, 贾世伟. (2021). 反馈相关负波:一种抑郁症的生物标记物. 心理科学进展, 29(3), 404-413.
[8] 任俊, 朱琼嫦. (2015). 内隐情绪调节: 一种有效的自我保护. 心理科学进展, 23(12), 2054-2063.
[9] 王春梅. (2012). 抑郁症患者负性情绪调节的认知重评策略:ERP研究 (硕士学位论文). 天津师范大学.
[10] 王巧婷, 张晶, 温特. (2019). 自动情绪调节对负性情绪面孔注意偏向的影响. 心理科学, 42(3), 550-555.
[11] 杨庆, 李亚琴. (2023). 不确定是坏的么?不确定状态中的错误加工特点及其解释机制. 心理科学进展, 31(3), 338-349.
[12] 余康. (2020). 情绪反应与自动化情绪调节的性别差异研究 (硕士学位论文). 西南大学, 重庆.
[13] Anderson E. C., Carleton R. N., Diefenbach M., & Han P. K. (2019). The relationship between uncertainty and affect. Frontiers in Psychology, 10, 2504.
[14] Bai Z., Luo S., Zhang L., Wu S., & Chi I. (2020). Acceptance and commitment therapy (ACT) to reduce depression: A systematic review and meta-analysis. Journal of Affective Disorders, 260, 728-737.
[15] Bargh J. A., Schwader K. L., Hailey S. E., Dyer R. L., & Boothby E. J. (2012). Automaticity in social-cognitive processes. Trends in Cognitive Sciences, 16(12), 593-605.
[16] Bocharov A. V., Knyazev G. G., & Savostyanov A. N. (2017). Depression and implicit emotion processing: An EEG study. Neurophysiologie Clinique/Clinical Neurophysiology, 47(3), 225-230.
[17] Carver, C. S. (2004). Negative affects deriving from the behavioral approach system. Emotion, 4(1), 3-22.
[18] Chami R., Cardi V., Lawrence N., MacDonald P., Rowlands K., Hodsoll J., & Treasure J. (2022). Targeting binge eating in bulimia nervosa and binge eating disorder using inhibitory control training and implementation intentions: A feasibility trial. Psychological Medicine, 52(5), 874-883.
[19] Chen S., Ding N., Wang F., Li Z., Qin S., Biswal B. B., & Yuan J. (2021). Functional decoupling of emotion coping network subsides automatic emotion regulation by implementation intention. Neural Plasticity, 1, 6639739.
[20] Chen S., Yu K., Yang J., & Yuan J. (2020). Automatic reappraisal-based implementation intention produces early and sustainable emotion regulation effects: Event-related potential evidence. Frontiers in Behavioral Neuroscience, 14, 89.
[21] Chen T., Liu L. L., Cui J. F., Li Y., Qin X. J., Tao S. L., Neumann D. L., Shum D. H. K., Cheung E. F. C., & Chan R. C. (2019). Implementation intention training for prospective memory in schizophrenia: A 3-month follow-up study. Schizophrenia Research, 206, 378-385.
[22] Cherniawsky, A. S., & Holroyd, C. B. (2013). High temporal discounters overvalue immediate rewards rather than undervalue future rewards: An event-related brain potential study. Cognitive, Affective, and Behavioral Neuroscience, 13, 36-45.
[23] Cuijpers P., Karyotaki E., Eckshtain D., Ng M. Y., Corteselli K. A., Noma H., Quero S., & Weisz J. R. (2020). Psychotherapy for depression across different age groups: A systematic review and meta-analysis. JAMA Psychiatry, 77(7), 694-702.
[24] Cuijpers P., Quero S., Noma H., Ciharova M., Miguel C., Karyotaki E., Cipriani A., Cristea I. A., & Furukawa T. A. (2021). Psychotherapies for depression: A network meta-analysis covering efficacy, acceptability and long-term outcomes of all main treatment types. World Psychiatry, 20(2), 283-293.
[25] Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 68-77.
[26] DeWall C. N., Twenge J. M., Koole S. L., Baumeister R. F., Marquez A., & Reid M. W. (2011). Automatic emotion regulation after social exclusion: Tuning to positivity. Emotion, 11(3), 623-636.
[27] Dijksterhuis, A., & Aarts, H. (2010). Goals, attention, and (un) consciousness. Annual Review of Psychology, 61(1), 467-490.
[28] Ding N., Yang J., Liu Y., & Yuan J. (2015). Paying less but harvesting more: The effect of unconscious acceptance in regulating frustrating emotion. Science China Life Sciences, 58, 799-809.
[29] Disner S. G., Beevers C. G., Haigh E. A., & Beck A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467-477.
[30] Drysdale A. T., Grosenick L., Downar J., Dunlop K., Mansouri F., Meng Y., Fetcho R. N., Zebley B., Oathes D. J., Etkin A., Schatzberg A. F., Sudheimer K., Keller J., Mayberg H. S., Gunning F. M., Alexopoulos G. S., Fox M. D., Pascual-Leone A., Voss H. U., Casey B. J., Dubin, M. J. & Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 28-38.
[31] Ehring T., Tuschen-Caffier B., Schnülle J., Fischer S., & Gross J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. Emotion, 10(4), 563-572.
[32] Eid R. S., Gobinath A. R., & Galea L. A. (2019). Sex differences in depression: Insights from clinical and preclinical studies. Progress in Neurobiology, 176, 86-102.
[33] Everaert J., Podina I. R., & Koster E. H. (2017). A comprehensive meta-analysis of interpretation biases in depression. Clinical Psychology Review, 58, 33-48.
[34] Fang, S., & Ding, D. (2023). The differences between acceptance and commitment therapy (ACT) and cognitive behavioral therapy: A three-level meta-analysis. Journal of Contextual Behavioral Science, 28, 149-168.
[35] Fernández-Álvarez H., Consoli A. J., & Gómez B. (2016). Integration in psychotherapy: Reasons and challenges. American Psychologist, 71(8), 820-830.
[36] Fowler C. H., Miernicki M. E., Rudolph K. D., & Telzer E. H. (2017). Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms. Developmental Cognitive Neuroscience, 27, 99-106.
[37] Gallo I. S., Keil A., McCulloch K. C., Rockstroh B., & Gollwitzer P. M. (2009). Strategic automation of emotion regulation. Journal of Personality and Social Psychology, 96(1), 11-31.
[38] Geckeler K. C., Barch D. M., & Karcher N. R. (2022). Associations between social behaviors and experiences with neural correlates of implicit emotion regulation in middle childhood. Neuropsychopharmacology, 47(6), 1169-1179.
[39] Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282.
[40] Gross, J. J., & Jazaieri, H. (2014). Emotion, emotion regulation, and psychopathology: An affective science perspective. Clinical Psychological Science, 2(4), 387-401.
[41] Günther V., Zimmer J., Kersting A., Hoffmann K. T., Lobsien D., & Suslow T. (2017). Automatic processing of emotional facial expressions as a function of social anhedonia. Psychiatry Research: NeuroImaging, 270, 46-53.
[42] Hassin R. R., Bargh J. A., & Zimerman S. (2009). Automatic and flexible: The case of nonconscious goal pursuit. Social Cognition, 27(1), 20-36.
[43] Holland R. W., Aarts H., & Langendam D. (2006). Breaking and creating habits on the working floor: A field-experiment on the power of implementation intentions. Journal of Experimental Social Psychology, 42(6), 776-783.
[44] Hopp H., Troy A. S., & Mauss I. B. (2011). The unconscious pursuit of emotion regulation: Implications for psychological health. Cognition and Emotion, 25(3), 532-545.
[45] Horne S. J., Topp T. E., & Quigley L. (2021). Depression and the willingness to expend cognitive and physical effort for rewards: A systematic review. Clinical Psychology Review, 88, 102065.
[46] Hua Y., Li M., Wang Q., Feng C., & Zhang J. (2020). The role of left orbitofrontal cortex in selective attention during automatic emotion regulation: Evidence from transcranial direct current stimulation. Acta Psychologica Sinica, 52(9), 1048-1056.
[47] Huang X., Chen S., Gao W., Yang J., & Yuan J. (2020). Emotion regulation by implementation intention is generalizable to unspecified situations: The nature of the underlying goal matters. Acta Psychologica, 210, 103144.
[48] Joormann, J., & Quinn, M. E. (2014). Cognitive processes and emotion regulation in depression. Depression and Anxiety, 31(4), 308-315.
[49] Kaiser R. H., Andrews-Hanna J. R., Wager T. D., & Pizzagalli D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603-611.
[50] Kanske P., Heissler J., Schönfelder S., & Wessa M. (2012). Neural correlates of emotion regulation deficits in remitted depression: The influence of regulation strategy, habitual regulation use, and emotional valence. NeuroImage, 61(3), 686-693.
[51] Katsumi, Y., & Dolcos, S. (2020). Suppress to feel and remember less: Neural correlates of explicit and implicit emotional suppression on perception and memory. Neuropsychologia, 145, 106683.
[52] Klawohn J., Burani K., Bruchnak A., Santopetro N., & Hajcak G. (2020). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 59, 1-9.
[53] Koole, S. L., & Rothermund, K. (2011). "I feel better but I don't know why": The psychology of implicit emotion regulation. Cognition and Emotion, 25(3), 389-399.
[54] Kustubayeva A., Eliassen J., Matthews G., & Nelson E. (2023). FMRI study of implicit emotional face processing in patients with MDD with melancholic subtype. Frontiers in Human Neuroscience, 17, 1029789.
[55] LeMoult, J., & Gotlib, I. H. (2019). Depression: A cognitive perspective. Clinical Psychology Review, 69, 51-66.
[56] Liu H., Zhi J., Zhang C., Huang S., Ma Y., Luo D., & Shi L. (2024). Association between Weight-Adjusted Waist Index and depressive symptoms: A nationally representative cross-sectional study from NHANES 2005 to 2018. Journal of Affective Disorders, 350, 49-57.
[57] Mauss I. B., Cook C. L., & Gross J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43(5), 698-711.
[58] Molla H., Lee R., Tare I., & de Wit H. (2024). Greater subjective effects of a low dose of LSD in participants with depressed mood. Neuropsychopharmacology, 49(5), 774-781.
[59] Mou J., Zheng T., Long Z., Mei L., Wang Y., Yuan Y., Guo X., Yang H. L., Gong Q. Y., & Qiu L. (2023). Sex differences of brain cortical structure in major depressive disorder. Psychoradiology, 3, kkad014.
[60] Mueller E. M., Pechtel P., Cohen A. L., Douglas S. R., & Pizzagalli D. A. (2015). Potentiated processing of negative feedback in depression is attenuated by anhedonia. Depression and Anxiety, 32(4), 296-305.
[61] Noworyta K., Cieslik A., & Rygula R. (2021). Neuromolecular underpinnings of negative cognitive bias in depression. Cells, 10(11), 3157.
[62] Pemberton, R., & Tyszkiewicz, M. D. F. (2016). Factors contributing to depressive mood states in everyday life: A systematic review. Journal of Affective Disorders, 200, 103-110.
[63] Peres M. F. P., Mercante J. P., Tobo P. R., Kamei H., & Bigal M. E. (2017). Anxiety and depression symptoms and migraine: A symptom-based approach research. The Journal of Headache and Pain, 18, 1-8.
[64] Potts G. F., Martin L. E., Burton P., & Montague P. R. (2006). When things are better or worse than expected: The medial frontal cortex and the allocation of processing resources. Journal of Cognitive Neuroscience, 18(7), 1112-1119.
[65] Pouyanfard S., Mohammadpour M., ParviziFard A. A., & Sadeghi K. (2020). Effectiveness of mindfulness-integrated cognitive behavior therapy on anxiety, depression and hope in multiple sclerosis patients: A randomized clinical trial. Trends in Psychiatry and Psychotherapy, 42(1), 55-63.
[66] Pujol J., Harrison B. J., Ortiz H., Deus J., Soriano-Mas C., Lopez-Sola M., Yücel M., Perich, X. & Cardoner, N. (2009). Influence of the fusiform gyrus on amygdala response to emotional faces in the non-clinical range of social anxiety. Psychological Medicine, 39(7), 1177-1187.
[67] Santesso D. L., Bogdan R., Birk J. L., Goetz E. L., Holmes A. J., & Pizzagalli D. A. (2012). Neural responses to negative feedback are related to negative emotionality in healthy adults. Social Cognitive and Affective Neuroscience, 7(7), 794-803.
[68] Schwager, S., & Rothermund, K. (2014). On the dynamics of implicit emotion regulation: Counter-regulation after remembering events of high but not of low emotional intensity. Cognition and Emotion, 28(6), 971-992.
[69] Sheeran P., Milne S., Webb T. L., & Gollwitzer, P. M. (2005). Implementation intentions and health behaviors. In M. Conner & P. Norman (Eds.), Predicting health behaviour: Research and practice with social cognition models (pp. 276-323). Open University Press.
[70] Sramek J. J., Murphy M. F., & Cutler N. R. (2016). Sex differences in the psychopharmacological treatment of depression. Dialogues in Clinical Neuroscience, 18(4), 447-457.
[71] Tian X., Hu N., Lu L., Tan L., & Li P. (2024). Gender differences in major depressive disorder at different ages: A REST-meta-MDD project-based study. BMC Psychiatry, 24(1), 575.
[72] Tran T., Hagen A. E., Hollenstein T., & Bowie C. R. (2021). Physical-and cognitive-effort-based decision-making in depression: Relationships to symptoms and functioning. Clinical Psychological Science, 9(1), 53-67.
[73] Villalobos D., Pacios J., & Vázquez C. (2021). Cognitive control, cognitive biases and emotion regulation in depression: A new proposal for an integrative interplay model. Frontiers in Psychology, 12, 628416.
[74] Visted E., Vøllestad J., Nielsen M. B., & Schanche E. (2018). Emotion regulation in current and remitted depression: A systematic review and meta-analysis. Frontiers in Psychology, 9, 756.
[75] Wang H. Y., Xu G. Q., Ni M. F., Zhang C. H., Sun X. P., Chang Y., & Zhang B. W. (2017). Neural mechanisms of implicit cognitive reappraisal: Preceding descriptions alter emotional response to unpleasant images. Neuroscience, 347, 65-75.
[76] Wang H. Y., You H. L., Song C. L., Zhou L., Wang S. Y., Li X. L., Liang Z. H., & Zhang B. W. (2024). Shared and distinct prefrontal cortex alterations of implicit emotion regulation in depression and anxiety: An fNIRS investigation. Journal of Affective Disorders, 354, 126-135.
[77] Watkins P. C., Vache K., Verney S. P., Muller S., & Mathews A. (1996). Unconscious mood-congruent memory bias in depression. Journal of Abnormal Psychology, 105(1), 34-41.
[78] Weinberg A., Liu H., & Shankman S. A. (2016). Blunted neural response to errors as a trait marker of melancholic depression. Biological Psychology, 113, 100-107.
[79] Yang Q., Tang P., Gu R., Luo W., & Luo Y. J. (2015). Implicit emotion regulation affects outcome evaluation. Social Cognitive and Affective Neuroscience, 10(6), 824-831.
[80] Yao, Y., & Xu, D. (2024). Unconscious cognitive reappraisal and unconscious expression suppression regulate emotional responses: An ERP study. Current Psychology, 43(9), 7772-7784.
[81] Yuan J., Ding N., Liu Y., & Yang J. (2015). Unconscious emotion regulation: Nonconscious reappraisal decreases emotion-related physiological reactivity during frustration. Cognition and Emotion, 29(6), 1042-1053.
[82] Yuan J., Liu Y., Ding N., & Yang J. (2014). The regulation of induced depression during a frustrating situation: Benefits of expressive suppression in Chinese individuals. PLoS ONE, 9(5), e97420.
[83] Yuan J., Zhang Y., Zhao Y., Gao K., Tan S., & Zhang D. (2023). The emotion-regulation benefits of implicit reappraisal in clinical depression: Behavioral and electrophysiological evidence. Neuroscience Bulletin, 39(6), 973-983.
[84] Zhang A., Yang C., Li G., Wang Y., Liu P., Liu Z., Sun N., & Zhang K. (2020). Functional connectivity of the prefrontal cortex and amygdala is related to depression status in major depressive disorder. Journal of Affective Disorders, 274, 897-902.
[85] Zhang J., Guan W., Chen X., Zhao Y., & Liu P. (2023). Automatic emotion regulation prompts response inhibition to angry faces in sub-clinical depression: An ERP study. Biological Psychology, 178, 108515.
[86] Zhang, W., & Lu, J. (2012). Time course of automatic emotion regulation during a facial Go/Nogo task. Biological Psychology, 89(2), 444-449.
[87] Zhang W., Zhao C., Tang F., & Luo W. (2024). Automatic positive and negative emotion regulation in adolescents with major depressive disorder. Psychopathology, 57(2), 111-122.
[88] Zhang Y., Chen S., Deng Z., Yang J., & Yuan J. (2020). Benefits of implicit regulation of instructed fear: Evidence from neuroimaging and functional connectivity. Frontiers in Neuroscience, 14, 201.
[89] Zilverstand A., Parvaz M. A., & Goldstein R. Z. (2017). Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. NeuroImage, 151, 105-116.

基金

*本研究得到国家自然科学基金面上项目(NSFC31971018)、教育部人文社会科学研究规划基金项目(24XJA190003)和四川省杰出青年科学基金项目(2023NSFSC1938)的资助

PDF(1001 KB)

Accesses

Citation

Detail

段落导航
相关文章

/