[1] 过继成思, 黄建平, 宛小昂. (2019). 目标预知对路径整合的影响. 心理学报, 51(2), 188-195. [2] 彭聃龄. (2019). 普通心理学 . 北京师范大学出版社.. [3] 吴佳鑫. (2022). 移动导航对空间知识学习和寻路绩效的影响及个体差异研究 (硕士学位论文). 华东师范大学, 上海. [4] 吴文雅, 王亮. (2023). 认知地图及其内在机制. 心理科学进展, 31(10), 1856-1872. [5] 赵悦彤. (2021). 寻路策略与空间导航的关系及寻路策略的影响因素 (博士学位论文). 东北师范大学, 长春. [6] Arnold A. E. G. F., Iaria G., & Ekstrom A. D. (2016). Mental simulation of routes during navigation involves adaptive temporal compression. Cognition, 157, 14-23. [7] Bonasia K., Blommesteyn J., & Moscovitch M. (2016). Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 26(1), 9-12. [8] Bonato M., Zorzi M., & Umiltà C. (2012). When time is space: Evidence for a mental time line. Neuroscience and Biobehavioral Reviews, 36(10), 2257-2273. [9] Boroditsky, L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition, 75(1), 1-28. [10] Brunec I. K., Javadi A. H., Zisch F. E. L., & Spiers H. J. (2017). Contracted time and expanded space: The impact of circumnavigation on judgements of space and time. Cognition, 166, 425-432. [11] Brunec I. K., Ozubko J. D., Ander T., Guo R. R., Moscovitch M., & Barense M. D. (2020). Turns during navigation act as boundaries that enhance spatial memory and expand time estimation. Neuropsychologia, 141, Article 107437. [12] Burgess N., Becker S., King J. A., & O'Keefe J. (2001). Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 1493-1503. [13] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. [14] Harootonian S. K., Ekstrom A. D., & Wilson R. C. (2022). Combination and competition between path integration and landmark navigation in the estimation of heading direction. PLoS Computational Biology, 18(2), Article e1009222. [15] Hegarty M., Richardson A. E., Montello D. R., Lovelace K., & Subbiah I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. [16] Ishikawa, T., & Zhou, Y. R. (2020). Improving cognitive mapping by training for people with a poor sense of direction. Cognitive Research: Principles and Implications, 5(1), Article 39. [17] Ivanenko Y., Grasso R., Israël I., & Berthoz A. (1997). Spatial orientation in humans: Perception of angular whole-body displacements in two-dimensional trajectories. Experimental Brain Research, 117(3), 419-427. [18] Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91(1), 128-142. [19] Kaski D., Quadir S., Nigmatullina Y., Malhotra P. A., Bronstein A. M., & Seemungal B. M. (2016). Temporoparietal encoding of space and time during vestibular-guided orientation. Brain, 139(2), 392-403. [20] Kline, S. R., & Reed, C. L. (2013). Contextual influences of dimension, speed, and direction of motion on subjective time perception. Attention, Perception, and Psychophysics, 75(1), 161-167. [21] Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484-507. [22] Manning C., Trevelyan Thomas R., & Braddick O. (2018). Can speed be judged independent of direction? Journal of Vision, 18(6), Article 15. [23] Mate J., Pires A. C., Campoy G., & Estaún S. (2009). Estimating the duration of visual stimuli in motion environments. Psicológica, 30(2), 287-300. [24] Montello D. R.,& Xiao, D. (2011). Linguistic and cultural universality of the concept of sense-of-direction. In: M. Egenhofer, N. Giudice, R. Moratz, & M. Worboys (Eds.), Spatial information theory (pp. 264-265). Springer. [25] Poucet B., Sargolini F., Song E. Y., Hangya B., Fox S., & Muller R. U. (2014). Independence of landmark and selfmotion-guided navigation: A different role for grid cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), Article 20130370. [26] Riemer M., Achtzehn J., Kuehn E., & Wolbers T. (2022). Cross-dimensional interference between time and distance during spatial navigation is mediated by speed representations in intraparietal sulcus and area hMT. NeuroImage, 257, Article 119336. [27] Riemer M., Shine J. P., & Wolbers T. (2018). On the (a)symmetry between the perception of time and space in large-scale environments. Hippocampus, 28(8), 539-548. [28] Teghil A., Boccia M., Bonavita A., & Guariglia C. (2019). Temporal features of spatial knowledge: Representing order and duration of topographical information. Behavioural Brain Research, 376, Article 112218. [29] Unuma H., Hasegawa H., & Kellman P. J. (2010). Spatiotemporal integration and contour interpolation revealed by a dot localization task with serial presentation paradigm. Japanese Psychological Research, 52(4), 268-280. [30] van Rijn, H. (2014). It's time to take the psychology of biological time into account: Speed of driving affects a trip's subjective duration. Frontiers in Psychology, 5, Article 1028. [31] Weisberg S. M., Schinazi V. R., Newcombe N. S., Shipley T. F., & Epstein R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669-682. [32] Whittington J. C. R., Muller T. H., Mark S., Chen G. F., Barry C., Burgess N., & Behrens, T. E. J. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. Cell, 183(5), 1249-1263. [33] Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138-146. |