焦虑与抑郁的共病:基于交叉滞后路径模型和网络分析的纵向研究*

张森森, 丁凤琴, 李宁, 靖治

心理科学 ›› 2025, Vol. 48 ›› Issue (3) : 732-742.

PDF(3128 KB)
中文  |  English
PDF(3128 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (3) : 732-742. DOI: 10.16719/j.cnki.1671-6981.20250321
临床与咨询

焦虑与抑郁的共病:基于交叉滞后路径模型和网络分析的纵向研究*

  • 张森森1, 丁凤琴**1, 李宁1,2, 靖治1,3
作者信息 +

Comorbidity of Anxiety and Depression in a Clinical Sample: A Longitudinal Study Using Causal-Lagged Path Model and Cross-Lagged Panel Network Analysis

  • Zhang Sensen1, Ding Fengqin1, Li Ning1,2, Jing Zhi1,3
Author information +
文章历史 +

摘要

采用交叉滞后路径模型和网络分析方法分析399名被诊断为焦虑症和抑郁症的患者在敏感期(T1)、巩固期(T2)和维持期(T3)的追踪数据。结果发现:(1)焦虑和抑郁的水平在T2和T3相较T1显著降低,且其在T2和T3未发生显著改变,而具体症状发生显著变化,这凸显了整体诊断之外对症状评估的必要。(2)核心症状和预期影响节点是临床干预的靶点:恐慌和疲劳是T1、T2和T3共有的核心症状,空虚感是T2和T3的核心症状;T1的预期影响节点手足颤抖、绝望和无用感能预防T2的症状,T2的躯体疼痛、睡眠障碍可以预防T3的症状。研究发现为不同发展期调整干预策略提供了潜在靶点,为预防健康人群潜在症状进一步发展为病症提供了参考。

Abstract

Anxiety and depression represent a substantial burden to modern society and severely affect the quality of life of individuals. This study aimed to investigate the dynamic nature of anxiety and depression using a longitudinal approach, and to analyze causal relationships and interaction mechanisms between symptoms at different stages of treatment. By combining causal-lagged path model (CLPM) and cross-lagged panel network analysis (CLPN), we sought to gain a comprehensive understanding of the causal relationships and evolution of symptoms, identifying key predictive symptoms, and suggest possible intervention strategies for different treatment stages. CLPM and CLPN may offer distinct perspectives for investigating the relationship between anxiety and depression. The CLPM adopts a syndrome-oriented approach and explores longitudinal relationships among two or more latent variables. Conversely, the CLPN integrates the strengths of latent variable modeling and network theory, assuming that relationships occur at the symptom level over time. It captures the longitudinal evolution of specific symptoms and their interactions through directed symptom networks, identifying symptoms that play predictive or influential roles in understanding cross-diagnostic processes.
Therefore, we recruited 399 outpatient patients (Mean age = 39.6 years; female = 374) diagnosed with severe anxiety and depression from a psychiatric hospital in Western China. Clinical interviews were conducted by two clinicians, which provided objective assessments of the patients’ conditions. CLPM and CLPN were employed to analyze three sets of data from the Self-rating Anxiety Scale (SAS) and the Self-rating Depression Scale (SDS), which were completed by the patients during the acute period (T1), continuation period (T2), and maintenance period (T3). The aim was to draw syndrome-oriented and symptom-oriented inferences regarding the mechanisms of complicated interactions and dynamic evolutionary processes of the disorder.
Results showed that there were high temporal correlations between anxiety and depression at all three time points, emphasizing their strong association. Panic and fatigue emerged as core symptoms across all periods, with emptiness identified as a shared core symptom at T2 and T3. Additionally, when comparing T2 and T3 to T1, anxiety and depression levels significantly decreased (p < .05). Notably, specific symptom relationships highlighted the importance of certain nodes. Depressive mood (i.e., depressed, sad, and blue), tachycardia, and fatigue acted as bridging symptoms, suggesting their role in activating opposing symptom clusters. This emphasizes the need to consider multiple dimensions of symptoms during interventions to disrupt the pathway of comorbidities. Moreover, the global strength of the three network structures did not differ significantly (p > .05), but T2 showed the highest one. It may indicate variations in treatment effects at different stages, with patients’ sensitivity to specific symptoms changing throughout the treatment process. Local strength analysis revealed specific changes in symptom sensitivity, emphasizing the importance of adjusting coping strategies for different symptoms during treatment. Additionally, the 95% confidence intervals of the bootstrapped edge weights of the network were relatively narrow, and there was no overlap with strongest edges, indicating the accuracy of the estimated network edges at each time point. The centrality stability coefficient (CS) estimated through bootstrapped subset procedures reveals that the CS of nodal strength, in-expected influence (iEI) and out-expected influence (oEI) were all greater than .25 at T1, T2, and T3. Specifically, in the T1→ T2 network and in the T2→ T3 network, the CS coefficients of iEI and oEI were also all greater than .25. Moreover, differences in nodal strength centrality indicated significant variations among several symptoms, suggesting stable and generalizable findings.
In conclusion, the present study sheds light on the nuanced interplay between anxiety and depression in outpatients. These findings have significant implications for the understanding and prevention of anxiety and depression, offering clinical recommendations and potential intervention targets for adjusting treatment strategies at different stages of treatment to mitigate symptom development. Thus, it is recommended that network analysis be intergrated into current diagnostic, treatment, and follow-up procedures to promote individualized interventions and improve patient recovery.

关键词

焦虑 / 抑郁 / 交叉滞后路径模型 / 交叉滞后网络分析模型 / 纵向研究

Key words

anxiety / depression / causal-lagged path model / cross-lagged panel network analysis / longitudinal study

引用本文

导出引用
张森森, 丁凤琴, 李宁, 靖治. 焦虑与抑郁的共病:基于交叉滞后路径模型和网络分析的纵向研究*[J]. 心理科学. 2025, 48(3): 732-742 https://doi.org/10.16719/j.cnki.1671-6981.20250321
Zhang Sensen, Ding Fengqin, Li Ning, Jing Zhi. Comorbidity of Anxiety and Depression in a Clinical Sample: A Longitudinal Study Using Causal-Lagged Path Model and Cross-Lagged Panel Network Analysis[J]. Journal of Psychological Science. 2025, 48(3): 732-742 https://doi.org/10.16719/j.cnki.1671-6981.20250321

参考文献

[1] 国家卫生健康委医政医管局. (2020). 精神障碍诊疗规范 (pp. 154-179). 人民卫生出版社..
[2] 汤丹丹, 温忠麟. (2020). 共同方法偏差检验: 问题与建议. 心理科学, 43(1), 215-223.
[3] 张伟霞, 席敏, 阴甜甜, 王成, 司书宾. (2023). 基于网络分析的抑郁症产生与演变预测. 心理科学进展, 31(11), 2129-2141.
[4] Bao Y. J., Li L. Z., Guan Y. L., Wang W., Liu Y., Wang P. F., … Wang Y. J. (2017). Prevalence and associated positive psychological variables of anxiety and depression among patients with central nervous system tumors in China: A cross-sectional study. Psycho-Oncology, 26(2), 262-269.
[5] Beard C., Millner A. J., Forgeard M. J. C., Fried E. I., Hsu K. J., Treadway M. T., … Björgvinsson T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359-3369.
[6] Borsboom D., Deserno M. K., Rhemtulla M., Epskamp S., Fried E. I., McNally R. J., … Waldorp L. J. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), Article 58.
[7] Bringmann L. F., Albers C., Bockting C., Borsboom D., Ceulemans E., Cramer A., … Wichers M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149, Article 104011.
[8] Bringmann, L. F., & Eronen, M. I. (2018). Don't blame the model: Reconsidering the network approach to psychopathology. Psychological Review, 125(4), 606-615.
[9] Brown T. A., Campbell L. A., Lehman C. L., Grisham J. R., & Mancill R. B. (2001). Current and lifetime comorbidity of the DSM-IV anxiety and mood disorders in a large clinical sample. Journal of Abnormal Psychology, 110(4), 585-599.
[10] Cao B., Zhu J., Zuckerman H., Rosenblat J. D., Brietzke E., Pan Z. H., … McIntyre R. S. (2019). Pharmacological interventions targeting anhedonia in patients with major depressive disorder: A systematic review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 109-117.
[11] Cha E. J., Hong S. M., Park D. H., Ryu S. H., Ha J. H., & Jeon H. J. (2022). A network analysis of panic symptoms in relation to depression and anxiety sensitivity in patients with panic disorder. Journal of Affective Disorders, 308, 134-140.
[12] Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233-255.
[13] Cramer A. O. J., Waldorp L. J., van der Maas, H. L. J., & Borsboom D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2-3), 137-150.
[14] Cummings C. M., Caporino N. E., & Kendall P. C. (2014). Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychological Bulletin, 140(3), 816-845.
[15] Curtiss, J., & Klemanski, D. H. (2016). Taxonicity and network structure of generalized anxiety disorder and major depressive disorder: An admixture analysis and complex network analysis. Journal of Affective Disorders, 199, 99-105.
[16] D' Agostino A., Pepi R., Monti M. R., & Starcevic V. (2020). The feeling of emptiness: A review of a complex subjective experience. Harvard Review of Psychiatry, 28(5), 287-295.
[17] Demyttenaere K., De Fruyt J., & Stahl S. M. (2005). The many faces of fatigue in major depressive disorder. The International Journal of Neuropsychopharmacology, 8(1), 93-105.
[18] Ding F. Q., Li N., Zhang S. S., Li J., Jing Z., & Zhao Y. M. (2024). Network comparison analysis of comorbid depression and anxiety disorder in a large clinical sample before and after treatment. Current Psychology, 43(15), 13267-13278.
[19] Epskamp S., Borsboom D., & Fried E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212.
[20] Epskamp S., Cramer A. O. J., Waldorp L. J., Schmittmann V. D., & Borsboom D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1-18.
[21] Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 999-1020.
[22] Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), Article 72.
[23] Funkhouser C. J., Chacko A. A., Correa K. A., Kaiser A. J. E., & Shankman S. A. (2021). Unique longitudinal relationships between symptoms of psychopathology in youth: A cross-lagged panel network analysis in the ABCD study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 62(2), 184-194.
[24] Furukawa T. A., Cipriani A., Cowen P. J., Leucht S., Egger M., & Salanti G. (2019). Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: A systematic review and dose-response meta-analysis. The Lancet Psychiatry, 6(7), 601-609.
[25] Garber, J., & Weersing, V. R. (2010). Comorbidity of anxiety and depression in youth: Implications for treatment and prevention. Clinical Psychology: Science and Practice, 17(4), 293-306.
[26] Gaspersz R., Lamers F., Kent J. M., Beekman A. T. F., Smit J. H., van Hemert A. M., … Penninx B. W. (2017). Anxious distress predicts subsequent treatment outcome and side effects in depressed patients starting antidepressant treatment. Journal of Psychiatric Research, 84, 41-48.
[27] GBD2019 Diseases and Injuries Collaborators. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10258), 1204-1222.
[28] Grant D. M., Beck J. G., & Davila J. (2007). Does anxiety sensitivity predict symptoms of panic, depression, and social anxiety?. Behaviour Research and Therapy, 45(9), 2247-2255.
[29] Hastie T., Qian J. Y., & Tay K. (2023). An introduction to glmnet. CRAN R Repositary, 5, 1-35.
[30] Hayasaka Y., Purgato M., Magni L. R., Ogawa Y., Takeshima N., Cipriani A., … Furukawa T. A. (2015). Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials. Journal of Affective Disorders, 180, 179-184.
[31] Jacobson, N. C., & Newman, M. G. (2014). Avoidance mediates the relationship between anxiety and depression over a decade later. Journal of Anxiety Disorders, 28(5), 437-445.
[32] Jacobson, N. C., & Newman, M. G. (2017). Anxiety and depression as bidirectional risk factors for one another: A meta-analysis of longitudinal studies. Psychological Bulletin, 143(11), 1155-1200.
[33] Jones P. J., Ma R. F., & McNally R. J. (2021). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 56(2), 353-367.
[34] Kaiser T., Herzog P., Voderholzer U., & Brakemeier E. L. (2021). Unraveling the comorbidity of depression and anxiety in a large inpatient sample: Network analysis to examine bridge symptoms. Depression and Anxiety, 38(3), 307-317.
[35] Knapen J., Vancampfort D., Moriën Y., & Marchal Y. (2015). Exercise therapy improves both mental and physical health in patients with major depression. Disability and Rehabilitation, 37(16), 1490-1495.
[36] Konjusha A., Hopwood C. J., Price A. L., Masuhr O., & Zimmermann J. (2021). Investigating the transdiagnostic value of subjective emptiness. Journal of Personality Disorders, 35(5), 788-800.
[37] Lenferink L. I. M., Eisma M. C., Smid G. E., de Keijser J., & Boelen P. A. (2022). Valid measurement of DSM-5 persistent complex bereavement disorder and DSM-5-TR and ICD-11 prolonged grief disorder: The traumatic grief inventory-self report plus (TGI-SR+). Comprehensive Psychiatry, 112, Article 152281.
[38] McNally, R. J. (2021). Network analysis of psychopathology: Controversies and challenges. Annual Review of Clinical Psychology, 17(1), 31-53.
[39] Olfson M., Mojtabai R., Merikangas K. R., Compton W. M., Wang S., Grant B. F., & Blanco C. (2017). Reexamining associations between mania, depression, anxiety and substance use disorders: Results from a prospective national cohort. Molecular Psychiatry, 22(2), 235-241.
[40] Qaseem A., Owens D. K., Etxeandia-Ikobaltzeta I., Tufte J., Cross J. T., Wilt T. J., … Yost J. (2023). Nonpharmacologic and pharmacologic treatments of adults in the acute phase of major depressive disorder: A living clinical guideline from the American college of physicians. Annals of Internal Medicine, 176(2), 239-252.
[41] Qi J. J., Ye Y. Y., Sun R., Zhen R., & Zhou X. (2023). Comorbidity of posttraumatic stress disorder and depression among adolescents following an earthquake: A longitudinal study based on network analysis. Journal of Affective Disorders, 324, 354-363.
[42] Ramos-Vera C., García O’Diana A., Basauri M. D., Calle D. H., & Saintila J. (2023). Psychological impact of COVID-19: A cross-lagged network analysis from the English longitudinal study of aging COVID-19 database. Frontiers in Psychiatry, 14, Article 1124257.
[43] Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36.
[44] Seo H. J., Jung Y. E., Kim T. S., Kim J. B., Lee M. S., Kim J. M., … Jun T. Y. (2011). Distinctive clinical characteristics and suicidal tendencies of patients with anxious depression. The Journal of Nervous and Mental Disease, 199(1), 42-48.
[45] Stahl S. M., Zhang L. S., Damatarca C., & Grady M. (2003). Brain circuits determine destiny in depression: A novel approach to the psychopharmacology of wakefulness, fatigue, and executive dysfunction in major depressive disorder. Journal of Clinical Psychiatry, 64(Suppl. 14), 6-17.
[46] Symington, S. (2019). Freedom from anxious thoughts and feelings: A two-step mindfulness approach for moving beyond fear and worry (pp. 33-35). New Harbinger Publications.
[47] Tao Y. Q., Niu H. Q., Tang Q. H., Wang S. J., Zhang L., Liu G., & Liu X. P. (2024). The association between online learning, perceived parental relationship, anxiety, and depression symptoms among secondary school students: Insight from symptom network and cross-lagged panel network approach. BMC Public Health, 24(1), Article 2133.
[48] Tel H., Tel H., & Doğan S. (2011). Fatigue, anxiety and depression in cancer patients. Neurology, Psychiatry and Brain Research, 17(2), 42-45.
[49] van Borkulo C. D., van Bork R., Boschloo L., Kossakowski J. J., Tio P., Schoevers R. A., … Waldorp L. J. (2023). Comparing network structures on three aspects: A permutation test. Psychological Methods, 28(6), 1273-1285.
[50] Wysocki A., van Bork R., Cramer A., & Rhemtulla M. (2022). Cross-lagged network models, PsyArXiv.
[51] Yang Y., Zhang S. F., Yang B. X., Li W., Sha S., Jia F. J., … Xiang Y. T. (2022). Mapping network connectivity among symptoms of depression and pain in Wuhan residents during the late-stage of the COVID-19 pandemic. Frontiers in Psychiatry, 13, Article 814790.
[52] Yue T., Li Q. T., Wang R. S., Liu Z. Y., Guo M. R., Bai F. M., … Wang H. J. (2020). Comparison of hospital anxiety and depression scale (HADS) and Zung self-rating anxiety/depression scale (SAS/SDS) in evaluating anxiety and depression in patients with psoriatic arthritis. Dermatology, 236(2), 170-178.
[53] Zhang S. S., Ding F. Q., & Chen J. T. (2024). Comorbidity of anxiety and depression disorder among clinical referral patients: A longitudinal study based on network analysis. Current Psychology, 43(23), 20655-20667.
[54] Zhang C. Y., Huang J. Y., & Xu W. (2024). Longitudinal relationships between depressive symptoms and generalized anxiety symptoms in adolescents: A cross-lagged network analysis. Journal of Youth and Adolescence, 53(8), 1918-1927.
[55] Zung, W. W. K. (1965). A self-rating depression scale. Archives of General Psychiatry, 12(1), 63-70.
[56] Zung, W. W. K. (1971). A rating instrument for anxiety disorders. Psychosomatics, 12(6), 371-379.

基金

*本研究得到国家自然科学基金(32360206)的资助

PDF(3128 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/