脑电神经反馈用于提高工作记忆的研究进展*

周文斌, 南文雅, 伏云发

心理科学 ›› 2024, Vol. 47 ›› Issue (3) : 514-521.

PDF(627 KB)
中文  |  English
PDF(627 KB)
心理科学 ›› 2024, Vol. 47 ›› Issue (3) : 514-521. DOI: 10.16719/j.cnki.1671-6981.20240301
基础、实验与工效

脑电神经反馈用于提高工作记忆的研究进展*

  • 周文斌1, 南文雅**1, 伏云发**2
作者信息 +

EEG Neurofeedback for Working Memory Enhancement: A Literature Review

  • Zhou Wenbin1, Nan Wenya1, Fu Yunfa2
Author information +
文章历史 +

摘要

工作记忆在许多复杂的认知活动中起着重要的作用,如何提高个体的工作记忆能力一直是研究的热点问题。脑电神经反馈利用操作性条件反射原理,将大脑活动实时反馈给个体,使得个体学会自主调节大脑活动,从而改善其认知和行为表现,已被广泛用于提高临床群体和健康群体的工作记忆。然而,由于现有研究在实验设计、训练方案、被试人群、样本量等方面并不相同,结论也并不完全一致,仍然缺少系统的总结和展望。文章重点评述不同的脑电神经反馈方案对工作记忆的作用结果,并指出现存的问题和可能的解决思路,以期为未来研究提供参考。

Abstract

Working memory refers to the ability to maintain and manipulate information over a period of seconds. In daily life, many complex cognitive activities such as learning and decision-making need the participation of working memory. Whether working memory performance can be improved by certain ways of training has been a hot research topic.
Neurofeedback (NF) is a type of biofeedback that uses the principle of operational conditioning to enable individuals to learn regulating their own brain activity. During electroencephalogram (EEG) NF training, the EEG signals are recorded from single or multiple electrodes attached on the scalp and relevant features are extracted and presented to the training individuals in real time by visual, auditory, or combined visual-auditory forms. Thus, participants can be aware of their brain state in real time. When their brain activity meets some predefined rewarded criteria, they will be rewarded by the feedback interface that presents real time feedback feature, such as increasing the sphere size in visual feedback, music quality in auditory feedback, etc. With NF training practice, they will learn how to adjust their brain activities that underlie a specific behavior or pathology.
A large amount of studies have shown that NF training can improve cognitive ability and behavioral performance in both clinical patients and healthy population. Regarding the NF training effectiveness for working memory enhancement, the existing research conclusions are not consistent due to the variations of the experimental design, training protocol, participants’ population, and sample size in the literature. Therefore, this study systematically reviewed previous studies on EEG NF training for working memory performance improvement. It started with the principle and mechanism of NF training and the introduction of the current research progress. Then the article reviewed the experimental results using different NF training protocols including theta enhancement NF, alpha enhancement NF, SMR enhancement NF, beta enhancement NF, gamma enhancement NF and two frequency bands NF protocols. We found that alpha, SMR and theta enhancement NF have shown the benefits on working memory enhancement in most studies. However, a few studies have reported inconsistent results, including the failure to adjust the training EEG feature (i.e. the non-learner problem) and no significant enhancement in working memory compared to the control group.
Future research can be conducted from following three aspects. First, the neural mechanism of EEG NF training effects on working memory has not been clear yet. Previous work only examined the EEG activity during NF training and resting periods. Whether and how NF training influences the brain activity in working memory task and results in working memory performance change remains unknown yet. Future work can utilize a variety of imaging methods such as EEG, functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and positron emission tomography (PET) to examine the brain activities during NF training, during resting state and during working memory task. Second, the non-learner problem has been reported in a number of studies. Although a few studies have identified some physiological and psychological predictors for non-learners in some NF protocols, the findings cannot be generalized due to the complexity of EEG activity, the variety of participants’ population and inconsistent experimental design. Future work is suggested to utilize machine learning methods to identify the predictors of non-learners in different NF training protocols in order to understand the reason of non-learner problem, and save time and effort on non-learners. Finally, the optimization of training parameters including training schedule and feedback interface, the adoption of randomized double-blind sham-controlled experimental design, clear reporting the experimental methods and results are desired in future NF studies. This review is expected to provide reference and pave the way for future research.

关键词

神经反馈 / 脑电 / 工作记忆

Key words

neurofeedback / EEG / working memory

引用本文

导出引用
周文斌, 南文雅, 伏云发. 脑电神经反馈用于提高工作记忆的研究进展*[J]. 心理科学. 2024, 47(3): 514-521 https://doi.org/10.16719/j.cnki.1671-6981.20240301
Zhou Wenbin, Nan Wenya, Fu Yunfa. EEG Neurofeedback for Working Memory Enhancement: A Literature Review[J]. Journal of Psychological Science. 2024, 47(3): 514-521 https://doi.org/10.16719/j.cnki.1671-6981.20240301

参考文献

[1] Agnoli S., Zanon M., Mastria S., Avenanti A., & Corazza G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia, 118, 99-106.
[2] Anna Weber L., Ethofer T., & Ehlis A. C. (2020). Predictors of neurofeedback training outcome: A systematic review. NeuroImage: Clinical, 27, Article 102301.
[3] Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29.
[4] Brandmeyer, T., & Delorme, A. (2020). Closed-loop frontal midlineθ neurofeedback: A novel approach for training focused-attention meditation. Frontiers in Human Neuroscience, 14, Article 246.
[5] Brzezicka A., Kamiński J., Reed C. M., Chung J. M., Mamelak A. N., & Rutishauser U. (2019). Working memory load-related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. Journal of Cognitive Neuroscience, 31(9), 1290-1307.
[6] Campos da Paz, V. K., Garcia A., Campos da Paz Neto, A., & Tomaz C. (2018). SMR neurofeedback training facilitates working memory performance in healthy older adults: A behavioral and EEG study. Frontiers in Behavioral Neuroscience, 12, Article 321.
[7] Carrick F. R., Pagnacco G., Hankir A., Abdulrahman M., Zaman R., Kalambaheti E. R., & Oggero E. (2018). The treatment of autism spectrum disorder with auditory neurofeedback: A randomized placebo controlled trial using the mente autism device. Frontiers in Neurology, 9, Article 537.
[8] Dobrakowski, P., & Łebecka, G. (2020). Individualized neurofeedback training may help achieve long-term improvement of working memory in children with ADHD. Clinical EEG and Neuroscience, 51(2), 94-101.
[9] Domingos C., Peralta M., Prazeres P., Nan W. Y., Rosa A., & Pereira J. G. (2021). Session frequency matters in neurofeedback training of athletes. Applied Psychophysiology and Biofeedback, 46(2), 195-204.
[10] Enriquez-Geppert S., Huster R. J., Scharfenort R., Mokom Z. N., Vosskuhl J., Figge C., & Herrmann C. S. (2013). The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success. Frontiers in Human Neuroscience, 7, Article 453.
[11] Escolano C., Aguilar M., & Minguez J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. 2011 annual international conference of the IEEE engineering in medicine and biology society , Boston, MA, USA.
[12] Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., De Ridder D., & Minguez J. (2014). A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in Behavioral Neuroscience, 8, Article 296.
[13] Escolano C., Olivan B., Lopez-del-Hoyo Y., Garcia-Campayo J., & Minguez J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. 2012 annual international conference of the IEEE engineering in medicine and biology society, San Diego, CA, USA.
[14] Finnigan, S., & Robertson, I. H. (2011). Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology, 48(8), 1083-1087.
[15] Gordon S., Todder D., Deutsch I., Garbi D., Alkobi O., Shriki O., & Meiran N. (2020). Effects of neurofeedback and working memory-combined training on executive functions in healthy young adults. Psychological Research, 84(6), 1586-1609.
[16] Hanslmayr S., Sauseng P., Doppelmayr M., Schabus M., & Klimesch W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1-10.
[17] Hanslmayr S., Staudigl T., & Fellner M. C. (2012). Oscillatory power decreases and long-term memory: The information via desynchronization hypothesis. Frontiers in Human Neuroscience, 6, Article 74.
[18] Haugg A., Renz F. M., Nicholson A. A., Lor C., Götzendorfer S. J., Sladky R., & Steyrl D. (2021). Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis. NeuroImage, 237, Article 118207.
[19] Hsueh J. J., Chen T. S., Chen J. J., & Shaw F. Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Human Brain Mapping, 37(7), 2662-2675.
[20] Jensen O., Kaiser J., & Lachaux J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324.
[21] Kadosh, K. C., & Staunton, G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 185, 545-555.
[22] Kattner, F. (2021). Transfer of working memory training to the inhibitory control of auditory distraction. Psychological Research, 85(8), 3152-3166.
[23] Klimesch W., Sauseng P., & Hanslmayr S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
[24] Kober S. E., Schweiger D., Reichert J. L., Neuper C., & Wood G. (2017). Upper alpha based neurofeedback training in chronic stroke: Brain plasticity processes and cognitive effects. Applied Psychophysiology and Biofeedback, 42(1), 69-83.
[25] Kober S. E., Witte M., Neuper C., & Wood G. (2017). Specific or nonspecific? Evaluation of band, baseline, and cognitive specificity of sensorimotor rhythm- and gamma-based neurofeedback. International Journal of Psychophysiology, 120, 1-13.
[26] Kober S. E., Witte M., Stangl M., Väljamäe A., Neuper C., & Wood G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126(1), 82-95.
[27] Kohl S. H., Mehler D. M. A., Lührs M., Thibault R. T., Konrad K., & Sorger B. (2020). The potential of functional near-infrared spectroscopy-based neurofeedback-a systematic review and recommendations for best practice. Frontiers in Neuroscience, 14, Article 594.
[28] Lavy Y., Dwolatzky T., Kaplan Z., Guez J., & Todder D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Applied Psychophysiology and Biofeedback, 44(1), 41-49.
[29] Lecomte, G., & Juhel, J. (2011). The effects of neurofeedback training on memory performance in elderly subjects. Psychology, 2(8), 846-852.
[30] Morales-Quezada L., Martinez D., El-Hagrassy M. M., Kaptchuk T. J., Sterman M. B., & Yeh G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy and Behavior, 101, Article 106570.
[31] Nan W. Y., Rodrigues J. P., Ma J. L., Qu X. T., Wan F., Mak P. I., & Rosa A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83-87.
[32] Nan W. Y., Wan F., Chang L. S., Pun S. H., Vai M. I., & Rosa A. (2017). An exploratory study of intensive neurofeedback training for schizophrenia. Behavioural Neurology, 2017, Article 6914216.
[33] Nan W. Y., Wan F., Tang Q., Wong C. M., Wang B. Y., & Rosa A. (2018). Eyes-closed resting EEG predicts the learning of alpha down-regulation in neurofeedback training. Frontiers in Psychology, 9, Article 1607.
[34] Ninaus M., Kober S. E., Witte M., Koschutnig K., Neuper C., & Wood G. (2015). Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biological Psychology, 110, 126-133.
[35] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
[36] Pavlov, Y. G., & Kotchoubey, B. (2022). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, 59, Article e13735.
[37] Pei G. Y., Wu J. L., Chen D. D., Guo G. X., Liu S. Z., Hong M. X., & Yan T. Y. (2018). Effects of an integrated neurofeedback system with dry electrodes: EEG acquisition and cognition assessment. Sensors, 18(10), Article 3396.
[38] Reichert J. L., Kober S. E., Neuper C., & Wood G. (2015). Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm. Clinical Neurophysiology, 126(11), 2068-2077.
[39] Reis J., Portugal A. M., Fernandes L., Afonso N., Pereira M., Sousa N., & Dias N. S. (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in Aging Neuroscience, 8, Article 157.
[40] Ros T., Enriquez-Geppert S., Zotev V., Young K. D., Wood G., Whitfield-Gabrieli S., & Thibault R. T. (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 143(6), 1674-1685.
[41] Ros T., Kwiek J., Andriot T., Michela A., Vuilleumier P., Garibotto V., & Ginovart N. (2021). PET imaging of dopamine neurotransmission during EEG neurofeedback. Frontiers in Physiology, 11, Article 590503.
[42] Ros T., Théberge J., Frewen P. A., Kluetsch R., Densmore M., Calhoun V. D., & Lanius R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324-335.
[43] Rozengurt R., Shtoots L., Sheriff A., Sadka O., & Levy D. A. (2017). Enhancing early consolidation of human episodic memory by theta EEG neurofeedback. Neurobiology of Learning and Memory, 145, 165-171.
[44] Singh F., Shu I. W., Hsu S. H., Link P., Pineda J. A., & Granholm E. (2020). Modulation of frontal gamma oscillations improves working memory in schizophrenia. NeuroImage: Clinical, 27, Article 102339.
[45] Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., & Sulzer J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86-100.
[46] Staufenbiel S. M., Brouwer A. M., Keizer A. W., & van Wouwe, N. C. (2014). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biological Psychology, 95, 74-85.
[47] van Doren J., Arns M., Heinrich H., Vollebregt M. A., Strehl U., & Loo S. K. (2019). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. European Child and Adolescent Psychiatry, 28(3), 293-305.
[48] Vernon D., Egner T., Cooper N., Compton T., Neilands C., Sheri A., & Gruzelier J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75-85.
[49] Wan F., Nan W. Y., Vai M. I., & Rosa A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Frontiers in Human Neuroscience, 8, Article 500.
[50] Wang, B. Y., & Pineau, J. (2016). Online bagging and boosting for imbalanced data streams. IEEE Transactions on Knowledge and Data Engineering, 28(12), 3353-3366.
[51] Wang, J. R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406-2420.
[52] Wang S. Y., Lin I. M., Fan S. Y., Tsai Y. C., Yen C. F., Yeh Y. C., & Lin H. C. (2019). The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. Journal of Affective Disorders, 257, 287-296.
[53] Wei T. Y., Chang D. W., Liu Y. D., Liu C. W., Young C. P., Liang S. F., & Shaw F. Z. (2017). Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomedical Engineering OnLine, 16(1), Article 128.
[54] Winterling S. L., Shields S. M., & Rose M. (2019). Reduced memory-related ongoing oscillatory activity in healthy older adults. Neurobiology of Aging, 79, 1-10.
[55] Witte M., Kober S. E., Ninaus M., Neuper C., & Wood G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience, 7, Article 478.
[56] Wong C. M., Wang Z., Wang B. Y., Lao K. F., Rosa A., Xu P., & Wan F. (2020). Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2123-2135.
[57] Xiang M. Q., Hou X. H., Liao B. G., Liao J. W., & Hu M. (2018). The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychology of Sport and Exercise, 36, 114-122.
[58] Xiong S., Cheng C., Wu X., Guo X. J., Yao L., & Zhang J. C. (2014). Working memory training using EEG neurofeedback in normal young adults. Bio-Medical Materials and Engineering, 24(6), 3637-3644.
[59] Yeh W. H., Hsueh J. J., & Shaw F. Z. (2021). Neurofeedback of alpha activity on memory in healthy participants: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 14, Article 562360.
[60] Zoefel B., Huster R. J., & Herrmann C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427-1431.

基金

*本研究得到国家自然科学基金( 81901830,82172058,81771926)和教育部人文社会科学青年基金项目 (19YJC190018)的资助

PDF(627 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/