[1] 胡传鹏, 孔祥祯, Wagenmakers, E. J., Ly A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965. [2] 金鹏, 张建辉. (2022). 民航飞行学员视觉注意分配特征研究. 空军航空医学, 39(5), 230-233. [3] 李泰安, 张禹, 李杰. (2019). 多目标追踪在各类人群评价与训练中的应用. 心理科学进展, 27(9), 1585-1595. [4] 李苑, 姬鸣, 兰继军, 常明, 游旭群. (2017). 从航空驾驶到工业设计: 情境意识研究的拓展. 心理科学, 40(2), 263-268. [5] 刘煜, 潘盈朵, 李萌, 李晨麟, 王新野, 游旭群. (2023). 近红外光谱技术在航空心理学研究中的应用与展望. 心理科学, 46(6), 1518-1528. [6] 卢天娇, 汤梦晗, 江涛, 周晨琛, 游旭群. (2020). 飞行员情景意识的影响因素剖析: 基于Endsley的三级理论. 应用心理学, 26(3), 195-207. [7] 魏柳青, 张学民. (2019). 多目标追踪的神经机制. 心理科学进展, 27(12), 2007-2018. [8] 魏柳青, 张学民, 刘冰, 鲁学明, 李迎娣. (2010). 多目标视觉追踪的现象、规律和认知加工机制. 心理科学进展, 18(12), 1919-1925. [9] 姚丹旭. (2022). 基于情景-交互特征的多目标追踪能力测试研究 (硕士学位论文). 陕西师范大学, 西安. [10] 殷恒婵. (2003). 青少年注意力测验与评价指标的研究. 中国体育科技, 39(3), 51-53. [11] 殷恒婵, 张锋周, 宋湘勤, 陈培林. (2006). 优秀运动员注意力测量与评价研究. 体育科学, 26(3), 58-63, 69. [12] Alnæs D., Sneve M. H., Richard G., Skåtun K. C., Kaufmann T., Nordvik J. E., & Westlye L. T. (2015). Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking. NeuroImage, 123, 129-137. [13] Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50(11), 999-1013. [14] Blumberg E. J., Peterson M. S., & Parasuraman R. (2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9, Article 3. [15] Cak S., Say B., & Misirlisoy M. (2020). Effects of working memory, attention, and expertise on pilots'situation awareness. Cognition, Technology and Work, 22(1), 85-94. [16] Callan, D. E., & Naito, E. (2014). Neural processes distinguishing elite from expert and novice athletes. Cognitive and Behavioral Neurology, 27(4), 183-188. [17] de Sant, D. A. L. M., & de Hilal, A. V. G. (2021). The impact of human factors on pilots'safety behavior in offshore aviation companies: A Brazilian case. Safety Science, 140, Article 105272. [18] Dørum E. S., Alnæs D., Kaufmann T., Richard G., Lund M. J., Tønnesen S., & Westlye L. T. (2016). Age-related differences in brain network activation and co-activation during multiple object tracking. Brain and Behavior, 6(11), Article e00533. [19] Endsley, M. R. (2021). Situation awareness. In G. Salvendy & W. Karwowski (Eds.), Handbook of human factors and ergonomics (pp. 434-455). John Wiley & Sons, Inc. [20] Esterman M., Noonan S. K., Rosenberg M., & DeGutis J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712-2723. [21] Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports, 3, Article 1154. [22] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. [23] Gaudino E. A., Geisler M. W., & Squires N. K. (1995). Construct validity in the trail making test: What makes Part B harder? Journal of Clinical and Experimental Neuropsychology, 17(4), 529-535. [24] Guo Z. P., Li A. M., & Yu L. (2017). “Neural efficiency” of athletes'brain during visuo-spatial task: An fMRI study on table tennis players. Frontiers in Behavioral Neuroscience, 11, Article 72. [25] Han S., Ji E., Choe E., Kim D., & Kim M. S. (2020). Simple action planning can affect attentional allocation in subsequent visual search. Psychonomic Bulletin and Review, 27(5), 1014-1024. [26] Hedge C., Powell G., & Sumner P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166-1186. [27] Huang L. Q., Mo L., & Li Y. (2012). Measuring the interrelations among multiple paradigms of visual attention: An individual differences approach. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 414-428. [28] Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089-1102. [29] Kelly, D., & Efthymiou, M. (2019). An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017. Journal of Safety Research, 69, 155-165. [30] Kerick S. E., Douglass L. W., & Hatfield B. D. (2004). Cerebral cortical adaptations associated with visuomotor practice. Medicine and Science in Sports and Exercise, 36(1), 118-129. [31] Kristjánsson, Á., & Draschkow, D. (2021). Keeping it real: Looking beyond capacity limits in visual cognition. Attention, Perception, and Psychophysics, 83(4), 1375-1390. [32] Lee S. S. Y., Wood J. M., & Black A. A. (2020). Impact of glaucoma on executive function and visual search. Ophthalmic and Physiological Optics, 40(3), 333-342. [33] Li F. Z., Liu Q. H., Lu H. J., & Zhu X. (2020). Attentional blink in pilots and its relationship with flight performance. Frontiers in Psychology, 11, Article 1696. [34] Lin, C. H., & Chen, C. M. (2016). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23-30. [35] Ludyga S., Gronwald T., & Hottenrott K. (2016). The athlet's brain: Cross-sectional evidence for neural efficiency during cycling exercise. Neural Plasticity, 2016, Article 4583674. [36] Ma, Z., & Flombaum, J. I. (2013). Off to a bad start: Uncertainty about the number of targets at the onset of multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1421-1432. [37] Maxwell H., Weaver B., Gagnon S., Marshall S., & Bédard M. (2020). The validity of three new driving simulator scenarios: Detecting differences in driving performance by difficulty and driver gender and age. Human Factors, 63(8), 1449-1464. [38] Meyerhoff, H. S., & Papenmeier, F. (2020). Individual differences in visual attention: A short, reliable, open-source, and multilingual test of multiple object tracking in PsychoPy. Behavior Research Methods, 52(6), 2556-2566. [39] Noland, R. M. (2017). Intelligence testing using a tablet computer: Experiences with using Q-interactive. Training and Education in Professional Psychology, 11(3), 156-163. [40] O'Donnell J. P., Macgregor L. A., Dabrowski J. J., Oestreicher J. M., & Romero J. J. (1994). Construct validity of neuropsychological tests of conceptual and attentional abilities. Journal of Clinical Psychology, 50(4), 596-600. [41] Patel R., Spreng R. N., & Turner G. R. (2013). Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabilitation and Neural Repair, 27(3), 187-199. [42] Petrini K., Pollick F. E., Dahl S., McAleer P., McKay L., Rocchesso D., & Puce A. (2011). Action expertise reduces brain activity for audiovisual matching actions: An fMRI study with expert drummers. NeuroImage, 56(3), 1480-1492. [43] Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179-197. [44] Qiu F. H., Pi Y. L., Liu K., Zhu H., Li X. P., Zhang J., & Wu Y. (2019). Neural efficiency in basketball players is associated with bidirectional reductions in cortical activation and deactivation during multiple-object tracking task performance. Biological Psychology, 144, 28-36. [45] Rolfs M., Lawrence B. M., & Carrasco M. (2013). Reach preparation enhances visual performance and appearance. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), Article 20130057. [46] Scholl B. J.(2009). What have we learned about attention from multiple-object tracking (and vice versa)? In D. Dedrick & L. Trick (Eds.), Computation, cognition, and pylyshyn (pp. 49-77). MIT Press. [47] Singh T., Fridriksson J., Perry C. M., Tryon S. C., Ross A., Fritz S., & Herter T. M. (2017). A novel computational model to probe visual search deficits during motor performance. Journal of Neurophysiology, 117(1), 79-92. [48] Tomasi D., Ernst T., Caparelli E. C., & Chang L. (2004). Practice-induced changes of brain function during visual attention: A parametric fMRI study at 4 Tesla. NeuroImage, 23(4), 1414-1421. [49] van Benthem, K., & Herdman, C. M. (2020). The importance of domain-dependent cognitive factors in GA safety: Predicting critical incidents with prospective memory, situation awareness, and pilot attributes. Safety Science, 130, Article 104892. [50] Voyer D., Jansen P., & Kaltner S. (2017). Mental rotation with egocentric and object-based transformations. The Quarterly Journal of Experimental Psychology, 70(11), 2319-2330. [51] Weigelt, M., & Memmert, D. (2021). The mental rotation ability of expert basketball players: Identifying on-court plays. Research Quarterly for Exercise and Sport, 92(1), 137-145. [52] Xie X. D., Li T. T., Xu S., Yu Y. Y., Ma Y. F., Liu Z., & Ji M. (2024). The effects of auditory working memory task on situation awareness in complex dynamic environments: An eye-movement study. Human Factors, 66(7), 1844-1859. [53] Yang H. L., Chu H., Kao C. C., Miao N. F., Chang P. C., Tseng P., & Chou K. R. (2020). Construction and evaluation of multidomain attention training to improve alertness attention, sustained attention, and visual-spatial attention in older adults with mild cognitive impairment: A randomized controlled trial. International Journal of Geriatric Psychiatry, 35(5), 537-546. [54] Zelinsky, G. J., & Neider, M. B. (2008). An eye movement analysis of multiple object tracking in a realistic environment. Visual Cognition, 16(5), 553-566. |