[1] 丁树良, 杨淑群, 汪文义. (2010). 可达矩阵在认知诊断测验编制中的重要作用. 江西师范大学学报(自然科学版), 34(5), 490-494. [2] 付颜斌, 陈琦鹏, 詹沛达. (2023). 问题解决任务中行动序列的二分类建模: 单/两参数行动序列模型. 心理学报, 55(8), 1383-1396. [3] 韩雨婷, 肖悦, 刘红云. (2022). 问题解决测验中过程数据的特征抽取与能力评估. 心理科学进展, 30(6), 1393-1409. [4] 李美娟, 刘玥, 刘红云. (2020). 计算机动态测验中问题解决过程策略的分析: 多水平混合IRT模型的拓展与应用. 心理学报, 52(4), 528-540. [5] 刘红云, 韩雨婷, 肖悦, 袁建林, 李美娟. (2023). 复杂问题解决能力的过程性测评与测量模型发展. 中国考试, 11, 9-20. [6] 刘耀辉, 徐慧颖, 陈琦鹏, 詹沛达. (2022). 基于过程数据的问题解决能力测量及数据分析方法. 心理科学进展, 30(3), 522-535. [7] 孙鑫, 黎坚, 符植煜. (2018). 利用游戏log-file预测学生推理能力和数学成绩——机器学习的应用. 心理学报, 50(7), 761-770. [8] Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3-14. [9] Bergner, Y., & von Davier, A. A. (2019). Process data in NAEP: Past, present, and future. Journal of Educational and Behavioral Statistics, 44(6), 706-732. [10] Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370. [11] Bradshaw, L., & Templin, J. (2014). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403-425. [12] Brault Foisy L. M., Potvin P., Riopel M., & Masson S. (2015). Is inhibition involved in overcoming a common physics misconception in mechanics? Trends in Neuroscience and Education, 4(1-2), 26-36. [13] Chen F., Lu C., & Cui Y. (2024). Using learners'problem-solving processes in computer-based assessments for enhanced learner modeling: A deep learning approach. Education and Information Technologies, 29(11), 13713-13733. [14] de la Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362. [15] de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. [16] Eggen, P., & Kauchak, D. (2004). Educational psychology: Windows, classrooms. Pearson Prentice Hall. [17] Fu Y. B., Zhan, P. D, Chen, Q. P., & Jiao H. (2024). Joint modeling of action sequences and action time in computer-based interactive tasks. Behavior Research Methods, 56(5), 4293-4310. [18] Greiff S., Niepel C., Scherer R., & Martin R. (2016). Understanding students'performance in a computer-based assessment of complex problem solving: An analysis of behavioral data from computer-generated log files. Computers in Human Behavior, 61, 36-46. [19] Gu, Y. Q., & Xu, G. J. (2020). Partial identifiability of restricted latent class models. The Annals of Statistics, 48(4), 2082-2107. [20] Han Y. T., Liu H. Y., & Ji F. (2022). A sequential response model for analyzing process data on technology-based problem-solving tasks. Multivariate Behavioral Research, 57(6), 960-977. [21] Hao J., Shu Z., & von Davier A. (2015). Analyzing process data from game/scenario-based tasks: An edit distance approach. Journal of Educational Data Mining, 7(1), 33-50. [22] Hao J. G., Smith L., Mislevy R., von Davier A., & Bauer M. (2016). Taming log files from game/simulation-based assessments: Data models and data analysis tools. ETS Research Report Series, 2016(1), 1-17. [23] He Q. W., Borgonovi F., & Paccagnella M. (2021). Leveraging process data to assess adults'problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers and Education, 166, Article 104170. [24] Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. [25] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. [26] Kerr, D., & Chung, G. K. W. K. (2012). Identifying key features of student performance in educational video games and simulations through cluster analysis. Journal of Educational Data Mining, 4(1), 144-182. [27] Kreitchmann R. S., de la Torre J., Sorrel M. A., Nájera P., & Abad F. J. (2023). Improving reliability estimation in cognitive diagnosis modeling. Behavior Research Methods, 55(7), 3446-3460. [28] Kuo B. C., Chen C. H., & De La Torre, J. (2018). A cognitive diagnosis model for identifying coexisting skills and misconceptions. Applied Psychological Measurement, 42(3), 179-191. [29] Kuo B. C., Chen C. H., Yang C. W., & Mok, M. M. C. (2016). Cognitive diagnostic models for tests with multiple-choice and constructed-response items. Educational Psychology, 36(6), 1115-1133. [30] Levy, R. (2019). Dynamic Bayesian network modeling of game-based diagnostic assessments. Multivariate Behavioral Research, 54(6), 771-794. [31] Li M. J., Liu H. Y., Cai M. F., & Yuan J. L. (2024). Estimation of individuals'collaborative problem solving ability in computer-based assessment. Education and Information Technologies, 29(1), 483-515. [32] Liu H. Y., Liu Y., & Li M. J. (2018). Analysis of process data of PISA 2012 computer-based problem solving: Application of the modified multilevel mixture IRT model. Frontiers in Psychology, 9, Article 1372. [33] Ma, W. C., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1-26. [34] Ma W. C., Sorrel M. A., Zhai X. M., & Ge Y. (2024). A dual-purpose model for binary data: Estimating ability and misconceptions. Journal of Educational Measurement, 61(2), 179-197. [35] Martin R. E., Sexton C. M., & Gerlovich J. A. (2001). Teaching science for all children. Allyn and Bacon. [36] Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models. Measurement, 11(3), 71-101. [37] Mislevy, R. J. (2019). Advances in measurement and cognition. The ANNALS of the American Academy of Political and Social Science, 683(1), 164-182. [38] OECD. (2014). PISA 2012 results: Creative problem solving: Students'skills in tackling real-life problems. PISA, OECD Publishing. [39] Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in Psychology, 9, Article 2231. [40] Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. [41] Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333-343. [42] Smith J. P., III, diSessa A. A., & Roschelle J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115-163. [43] Stavy R., Babai R., Tsamir P., Tirosh D., Lin F. L., & McRobbie C. (2006). Are intuitive rules universal? International Journal of Science and Mathematics Education, 4(3), 417-436. [44] Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354. [45] Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. [46] van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287-308. [47] Xia S. L., Zhan P. D., Chan K. K. H., & Wang L. J. (2024). Assessing concept mapping competence using item expansion-based diagnostic classification analysis. Journal of Research in Science Teaching, 61(7), 1516-1542. [48] Xiao, Y., & Liu, H. Y. (2023). A state response measurement model for problem-solving process data. Behavior Research Methods, 56(1), 258-277. [49] Zhai, X. M., & Li, M. (2021). Validating a partial-credit scoring approach for multiple-choice science items: An application of fundamental ideas in science. International Journal of Science Education, 43(10), 1640-1666. [50] Zhan P. D., Jiao H., & Liao D. D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286. [51] Zhan, P. D., & Qiao, X. (2022). Diagnostic classification analysis of problem-solving competence using process data: An item expansion method. Psychometrika, 87(4), 1529-1547. |