自然言语理解中预测编码的神经计算与建模*

张新淼, 张丹

心理科学 ›› 2025, Vol. 48 ›› Issue (4) : 861-875.

PDF(515 KB)
中文  |  English
PDF(515 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (4) : 861-875. DOI: 10.16719/j.cnki.1671-6981.20250409
计算建模与人工智能

自然言语理解中预测编码的神经计算与建模*

  • 张新淼, 张丹**
作者信息 +

Neural Computation and Modeling of Predictive Coding in Naturalistic Speech Comprehension

  • Zhang Xinmiao, Zhang Dan
Author information +
文章历史 +

摘要

预测编码被认为是实现高效、准确言语理解的核心机制。随着自然范式的发展和大语言模型的应用,研究者得到得以在具有高生态效度的语境中对语言预测过程进行探索。用于探索自然言语理解中预测编码机制的计算与建模方法近年来快速发展,包括基于语言模型的预测编码计算、脑际视角下的预测编码计算以及预测编码的动态机制建模等。这些方法在三个层面推动了预测编码机制的实证研究和理论进步:在现象层面,预测加工在语言理解中普遍存在,且在复杂环境中具备稳健性;在计算层面,大脑能够并行整合多层级语境,生成多尺度预测输出;在神经机制层面,多频带神经振荡协同参与预测编码。对上述方法与进展的系统梳理有助于深化对语言理解中预测机制的认识。

Abstract

During naturalistic speech comprehension, brain faces multiple sources of uncertainty, including noise in the speech signal, linguistic ambiguity, and the transient, rapidly unfolding nature of auditory information. To effectively manage these challenges, the brain does not passively receive input but actively engages in predictive processing by integrating prior knowledge with current sensory evidence in a dynamic and adaptive manner. Predictive coding theory, grounded in the Bayesian brain hypothesis, posits that higher-level brain regions generate predictions and send them to lower levels, where incoming sensory inputs are compared against these predictions. The resulting prediction errors are then transmitted to higher levels to iteratively refine internal models and optimize information processing. With advances in naturalistic paradigms and large language models (LLMs), research on predictive coding has shifted from merely establishing its existence to systematically investigating its computational and neural underpinnings in greater depth.
This paper reviews recent progress in the neural computation and modeling of predictive coding during naturalistic language comprehension, focusing on three major methodological approaches: (1) language-model-based computation of prediction; (2) prediction from an inter-brain perspective; and (3) oscillation-based modeling of prediction. First, language models have been extensively employed to extract prediction-related features such as surprisal and entropy. These features are used in analyses like temporal response function (TRF) modeling to map multilayered linguistic predictions—at phonemic, lexical, syntactic, and higher levels—onto spatiotemporal brain dynamics recorded via EEG, MEG, or fMRI. Further studies reveal a high degree of alignment between the activations of LLMs and human brain responses, particularly during continuous natural speech processing, suggesting that LLMs may serve as biologically inspired models to infer predictive mechanisms in the brain. Second, studies adopting an inter-brain perspective have explored prediction in communication through inter-subject correlation (ISC) metrics. For instance, the observation that a listener’s brain activity can precede the speaker’s by several seconds indicates the predictive nature of comprehension and its critical role in communication success. Moreover, some studies have incorporated LLM-derived prediction-related features into ISC frameworks, further extending the applicability of predictive coding theory to multi-agent interactive contexts such as dyadic conversation or group interaction. Third, to elucidate the neural mechanisms of predictive coding, researchers have developed dynamic models that integrate prediction signals with neural oscillations, which offer a mechanistic account of how predictive processes shape oscillatory dynamics during naturalistic speech comprehension.
Building on these methodological foundations, this paper further reviews recent progress in predictive coding during naturalistic language comprehension across multiple levels of analysis. First, at the phenomenological level, recent findings demonstrate that predictive processing is a ubiquitous and robust feature of language comprehension, consistently observed across diverse paradigms and real-life listening conditions, including noisy environments and semantically ambiguous contexts. Second, at the computational level, the brain integrates context across multiple linguistic hierarchies, ranging from phonemes and words to syntactic and discourse structures, and generates structured, temporally extended predictions that are not confined to the next word, but encompass longer-range content organized along hierarchical time scales. Third, at the neural mechanism level cross-frequency coupling, particularly between low-frequency phase (delta/theta) and high-frequency amplitude (beta/gamma), has been identified as a key mechanism for coordinating temporal and hierarchical aspects of prediction, providing a physiological substrate for multiscale linguistic predictive coding.
Despite substantial progress in recent years, several important questions remain. For instance, how does the brain flexibly modulate the precision and temporal range of its predictions under challenging conditions, such as noisy environments or weak contextual constraints? Future research on predictive coding in naturalistic speech comprehension may benefit from integrating naturalistic experimental paradigms with causal manipulation techniques and advanced computational modeling, in order to more effectively elucidate the dynamic and mechanistic foundations of predictive processing in real-world communication.

关键词

预测编码 / 自然言语理解 / 大语言模型 / 计算建模

Key words

predictive coding / naturalistic speech comprehension / large language models / computational modeling

引用本文

导出引用
张新淼, 张丹. 自然言语理解中预测编码的神经计算与建模*[J]. 心理科学. 2025, 48(4): 861-875 https://doi.org/10.16719/j.cnki.1671-6981.20250409
Zhang Xinmiao, Zhang Dan. Neural Computation and Modeling of Predictive Coding in Naturalistic Speech Comprehension[J]. Journal of Psychological Science. 2025, 48(4): 861-875 https://doi.org/10.16719/j.cnki.1671-6981.20250409

参考文献

[1] 王少楠, 丁鼐, 林楠, 张家俊, 宗成庆. (2022). 语言认知与语言计算——人与机器的语言理解. 中国科学: 信息科学, 52(10), 1748-1774.
[2] 王少楠, 张家俊, 宗成庆. (2022). 基于语言计算方法的语言认知实验综述. 中文信息学报, 36(4), 1-11.
[3] 蒋嘉浩, 赵国钰, 马英博, 刘兰芳, 丁国盛. (2023). 语义在人脑中的分布式表征:来自自然语言处理技术的证据. 心理科学进展, 31(6), 1002-1019.
[4] Aitchison, L., & Lengyel, M. (2017). With or without you: Predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219-227.
[5] Alday, P. M. (2019). M/EEG analysis of naturalistic stories: a review from speech to language processing. Language, Cognition and Neuroscience, 34(4), 457-473.
[6] Alexandrou A. M., Saarinen T., Kujala J., & Salmelin R. (2020). Cortical entrainment: What we can learn from studying naturalistic speech perception. Language, Cognition and Neuroscience, 35(6), 681-693.
[7] Antonello, R., & Huth, A. (2023). Predictive coding or just feature discovery? An alternative account of why language models fit brain data. Neurobiology of Language, 5(1), 64-79.
[8] Armeni K., Willems R. M., van den Bosch A., & Schoffelen J. M. (2019). Frequency-specific brain dynamics related to prediction during language comprehension. NeuroImage, 198, 283-295.
[9] Arnal, L. H., & Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390-398.
[10] Auksztulewicz R., Ödül O. B., Helbling S., Böke A., Cappotto D., Luo D., Schnupp J., & Melloni L. (2025). "What" and "when" predictions jointly modulate speech processing. The Journal of Neuroscience, 45(20), e1049242025.
[11] Aurnhammer, C., & Frank, S. L. (2019). Evaluating information-theoretic measures of word prediction in naturalistic sentence reading. Neuropsychologia, 134, 107198.
[12] Aydelott J., Dick F., & Mills D. L. (2006). Effects of acoustic distortion and semantic context on event-related potentials to spoken words. Psychophysiology, 43(5), 454-464.
[13] Barthel M., Tomasello R., & Liu M. (2024). Conditionals in context: Brain signatures of prediction in discourse processing. Cognition, 242, 105635.
[14] Blank, I. A. (2023). What are large language models supposed to model? Trends in Cognitive Sciences, 27(0), 987-989.
[15] Boleda, G. (2020). Distributional semantics and linguistic theory. Annual Review of Linguistics, 6(1), 213-234.
[16] Britton J., Cong Y., Hsu Y. Y., Chersoni E., & Blache P. (2024). On the influence of discourse connectives on the predictions of humans and language models. Frontiers in Human Neuroscience, 18, 1363120.
[17] Brodbeck C., Bhattasali S., Cruz Heredia A. A., Resnik P., Simon J. Z., & Lau E. (2022). Parallel processing in speech perception with local and global representations of linguistic context. eLife, 11, e72056.
[18] Broderick M. P., Anderson A. J., Di Liberto G. M., Crosse M. J., & Lalor E. C. (2018). Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech. Current Biology, 28(5), 803-809.
[19] Broderick M. P., Anderson A. J., & Lalor E. C. (2019). Semantic context enhances the early auditory encoding of natural speech. Journal of Neuroscience, 39(38), 7564-7575.
[20] Broderick M. P., Di Liberto G. M., Anderson A. J., Rofes A., & Lalor E. C. (2021). Dissociable electrophysiological measures of natural language processing reveal differences in speech comprehension strategy in healthy ageing. Scientific Reports, 11(1), 4963.
[21] Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926-1929.
[22] Buzsáki, G., & Vöröslakos, M. (2023). Brain rhythms have come of age. Neuron, 111(7), 922-926.
[23] Cai J., Hadjinicolaou A. E., Paulk A. C., Soper D. J., Xia T., Wang A. F., Rolston J. D., Richardson R. M., Williams Z. M., & Cash S. S. (2025). Natural language processing models reveal neural dynamics of human conversation. Nature Communications, 16(1), 3376.
[24] Caucheteux C., Gramfort A., & King J. R. (2023). Evidence of a predictive coding hierarchy in the human brain listening to speech. Nature Human Behaviour, 7(3), 430-441.
[25] Caucheteux, C., & King, J. R. (2022). Brains and algorithms partially converge in natural language processing. Communications Biology, 5(1), 1-10.
[26] Cevoli B., Watkins C., & Rastle K. (2022). Prediction as a basis for skilled reading: insights from modern language models. Royal Society Open Science, 9(6), 211837.
[27] Chalk M., Marre O., & Tkačik G. (2018). Toward a unified theory of efficient, predictive, and sparse coding. Proceedings of the National Academy of Sciences, 115(1), 186-191.
[28] Chater, N., & Manning, C. D. (2006). Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 10(7), 335-344.
[29] Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, e62.
[30] Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204.
[31] Crosse M. J., Di Liberto G. M., Bednar A., & Lalor E. C. (2016). The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.
[32] Crosse M. J., Zuk N. J., Di Liberto G. M., Nidiffer A. R., Molholm S., & Lalor E. C. (2021). Linear modeling of neurophysiological responses to speech and other continuous stimuli: Methodological considerations for applied research. Frontiers in Neuroscience, 15, 1350.
[33] Czeszumski A., Eustergerling S., Lang A., Menrath D., Gerstenberger M., Schuberth S., Schreiber F., Rendon Z. Z., & König P. (2020). Hyperscanning: A valid method to study neural inter-brain underpinnings of social interaction. Frontiers in Human Neuroscience, 14, 39.
[34] Dai B., Chen C., Long Y., Zheng L., Zhao H., Bai X., Liu W., Zhang Y., Liu L., Guo T., Ding G., & Lu C. (2018). Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nature Communications, 9(1), 1-12.
[35] Dell, G. S., & Chang, F. (2014). The P-chain: relating sentence production and its disorders to comprehension and acquisition. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 20120394.
[36] Dikker, S., & Pylkkänen, L. (2013). Predicting language: MEG evidence for lexical preactivation. Brain and Language, 127(1), 55-64.
[37] Donhauser, P. W., & Baillet, S. (2020). Two distinct neural timescales for predictive speech processing. Neuron, 105(2), 385-393.
[38] Dou J., Anderson A. J., White A. S., Norman-Haignere S. V., & Lalor E. C. (2025). Dynamic modeling of EEG responses to natural speech reveals earlier processing of predictable words. PLOS Computational Biology, 21(4), e1013006.
[39] Doya, K. (2007). Bayesian brain: Probabilistic approaches to neural coding. MIT Press.
[40] Etard, O., & Reichenbach, T. (2019). Neural speech tracking in the theta and in the Delta frequency band differentially encode clarity and comprehension of speech in noise. Journal of Neuroscience, 39(29), 5750-5759.
[41] Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44(4), 491-505.
[42] Fedorenko E., Piantadosi S. T., & Gibson, E. A. F. (2024). Language is primarily a tool for communication rather than thought. Nature, 630(8017), 575-586.
[43] Fernández G., Shalom D. E., Kliegl R., & Sigman M. (2014). Eye movements during reading proverbs and regular sentences: The incoming word predictability effect. Language, Cognition and Neuroscience, 29(3), 260-273.
[44] Ferstl, E. C. (2021). Context in language comprehension. Psychology of Learning and Motivation - Advances in Research and Theory, 75, 37-77.
[45] Fontolan L., Morillon B., Liegeois-Chauvel C., & Giraud A.-L. (2014). The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nature Communications, 5(1), 4694.
[46] Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138.
[47] Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 1019-1021.
[48] Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1211-1221.
[49] Friston K., Parr T., Yufik Y., Sajid N., Price C. J., & Holmes E. (2020). Generative models, linguistic communication and active inference. Neuroscience and Biobehavioral Reviews, 118, 42-64.
[50] Gibson E., Futrell R., Piantadosi S. P., Dautriche I., Mahowald K., Bergen L., & Levy R. (2019). How efficiency shapes human language. Trends in Cognitive Sciences, 23(5), 389-407.
[51] Gillis M., Vanthornhout J., Simon J. Z., Tom Francart, & Brodbeck, C. (2021). Neural markers of speech comprehension: Measuring EEG tracking of linguistic speech representations, controlling the speech acoustics. Journal of Neuroscience, 41(50), 10316-10329.
[52] Giraud, A. L., & Arnal, L. H. (2018). Hierarchical predictive information is channeled by asymmetric oscillatory activity. Neuron, 100(5), 1022-1024.
[53] Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517.
[54] Goldstein A., Grinstein-Dabush A., Schain M., Wang H., Hong Z., Aubrey B., & Hasson U. (2024). Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns. Nature Communications, 15(1), 2768.
[55] Goldstein A., Wang H., Niekerken L., Schain M., Zada Z., Aubrey B., Sheffer T., & Hasson U. (2025). A unified acoustic-to-speech-to-language embedding space captures the neural basis of natural language processing in everyday conversations. Nature Human Behaviour, 9(5), 1-15.
[56] Goldstein A., Zada Z., Buchnik E., Schain M., Price A., Aubrey B., Nastase S. A., & Hasson U. (2022). Shared computational principles for language processing in humans and deep language models. Nature Neuroscience, 25(3), 369-380.
[57] Grand G., Blank I. A., Pereira F., & Fedorenko E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 6(7), 975-987.
[58] Griffiths T. L., Chater N., Kemp C., Perfors A., & Tenenbaum J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357-364.
[59] Grisoni L., Miller T. M., & Pulvermüller F. (2017). Neural correlates of semantic prediction and resolution in sentence processing. Journal of Neuroscience, 37(18), 4848-4858.
[60] Grisoni L., Tomasello R., & Pulvermüller F. (2021). Correlated brain indexes of semantic prediction and prediction error: Brain localization and category specificity. Cerebral Cortex, 31(3), 1553-1568.
[61] Günther F., Rinaldi L., & Marelli M. (2019). Vector-space models of semantic representation from a cognitive perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14(6), 1006-1033.
[62] Hagoort, P., & Brown, C. M. (2000). ERP effects of listening to speech compared to reading: The P600/SPS to syntactic violations in spoken sentences and rapid serial visual presentation. Neuropsychologia, 38(11), 1531-1549.
[63] Hale J. T., Campanelli L., Li J., Bhattasali S., Pallier C., & Brennan J. R. (2022). Neurocomputational models of language processing. Annual Review of Linguistics, 8, 427-446.
[64] Hamilton, L. S., & Huth, A. G. (2020). The revolution will not be controlled: natural stimuli in speech neuroscience. Language, Cognition, and Neuroscience, 35(5), 573-582.
[65] Harris, Z. S. (1954). Distributional Structure. Word, 10(2-3), 146-162.
[66] Hartley, C. A., & Poeppel, D. (2020). Beyond the stimulus: A neurohumanities approach to language, music, and emotion. Neuron, 108(4), 597-599.
[67] Hasson, U. (2025). Uncovering a timescale hierarchy by studying the brain in a natural context. Journal of Neuroscience, 45(12), 20-25.
[68] Hasson, U., & Frith, C. D. (2016). Mirroring and beyond: Coupled dynamics as a generalized framework for modelling social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150366.
[69] Hasson U., Ghazanfar A. A., Galantucci B., Garrod S., & Keysers C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114-121.
[70] Hasson U., Nir Y., Levy I., Fuhrmann G., & Malach R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634-1640.
[71] Haufe S., Meinecke F., Görgen K., Dähne S., Haynes J. D., Blankertz B., & Bießmann F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96-110.
[72] Heilbron, M. (2022). Getting ahead: Prediction as a window into language, and language as a window into the predictive brain [doctoral dissertatian]. Radboud University.
[73] Heilbron M., Armeni K., Schoffelen J. M., Hagoort P., & de Lange, F. P. (2022). A hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences of the United States of America, 119(32), e2201968119.
[74] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
[75] Holroyd, C. B. (2022). Interbrain synchrony: On wavy ground. Trends in Neurosciences, 45(5), 346-357.
[76] Hovsepyan S., Olasagasti I., & Giraud A. L. (2020). Combining predictive coding and neural oscillations enables online syllable recognition in natural speech. Nature Communications, 11(1), 3117.
[77] Hovsepyan S., Olasagasti I., & Giraud A. L. (2023). Rhythmic modulation of prediction errors: A top-down gating role for the beta-range in speech processing. PLOS Computational Biology, 19(11), e1011595.
[78] Hsin C. H., Chao P. C., & Lee C. Y. (2023). Speech comprehension in noisy environments: Evidence from the predictability effects on the N400 and LPC. Frontiers in Psychology, 14, 1105346.
[79] Huettig, F., & Mani, N. (2016). Is prediction necessary to understand language? Probably not. Language, Cognition and Neuroscience, 31(1), 19-31.
[80] Huth A. G., De Heer W. A., Griffiths T. L., Theunissen F. E., & Gallant J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458.
[81] Hyafil A., Fontolan L., Kabdebon C., Gutkin B., & Giraud A. L. (2015). Speech encoding by coupled cortical theta and gamma oscillations. eLife, 4, e06213.
[82] Jain S., Vo V. A., Wehbe L., & Huth A. G. (2023). Computational language modeling and the promise of in silico experimentation. Neurobiology of Language, 5(1), 80-106.
[83] Jamison C., Aiken S. J., Kiefte M., Newman A. J., Bance M., & Sculthorpe-Petley L. (2016). Preliminary investigation of the passively evoked N400 as a tool for estimating speech-in-noise thresholds. American Journal of Audiology, 25(4), 344-358.
[84] Jiang J., Zheng L., & Lu C. (2020). A hierarchical model for interpersonal verbal communication. Social Cognitive and Affective Neuroscience, 16(1-2), 246-255.
[85] Kingsbury, L., & Hong, W. (2020). A multi-brain framework for social interaction. Trends in Neurosciences, 43(9), 651-666.
[86] Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719.
[87] Koskinen M., Kurimo M., Gross J., Hyvärinen A., & Hari R. (2020). Brain activity reflects the predictability of word sequences in listened continuous speech. NeuroImage, 219, 116936.
[88] Kraus F., Tune S., Ruhe A., Obleser J., & Wöstmann M. (2021). Unilateral acoustic degradation delays attentional separation of competing speech. Trends in Hearing, 25, 23312165211013242.
[89] Krauss, P. (2024). AI as a model for the brain. In P. Krauss (Ed.), Artificial intelligence and brain research: Neural networks, deep learning and the future of cognition (pp. 197-202). Springer.
[90] Kumar, A. A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychonomic Bulletin and Review, 28(1), 40-80.
[91] Kumar M., Goldstein A., Michelmann S., Zacks J. M., Hasson U., & Norman K. A. (2023). Bayesian surprise predicts human event segmentation in story listening. Cognitive Science, 47(10), e13343.
[92] Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language comprehension? Language, Cognition, and Neuroscience, 31(1), 32-59.
[93] Kuperberg G. R., Sitnikova T., Caplan D., & Holcomb P. J. (2003). Electrophysiological distinctions in processing conceptual relationships within simple sentences. Cognitive Brain Research, 17(1), 117-129.
[94] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621-647.
[95] Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161-163.
[96] Lakatos P., Gross J., & Thut G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905.
[97] Lange, F. P. de, Heilbron, M., & Kok, P. (2018). How do expectations shape perception? Trends in Cognitive Sciences, 22(9), 764-779.
[98] Lange, F. P. de, Schmitt, L. M., & Heilbron, M. (2022). Reconstructing the predictive architecture of the mind and brain. Trends in Cognitive Sciences, 26(12), 1018-1019.
[99] Lau E. F., Phillips C., & Poeppel D. (2008). A cortical network for semantics: (de)Constructing the N400. Nature Reviews Neuroscience, 9(12), 920-933.
[100] León-Cabrera P., Flores A., Rodríguez-Fornells A., & Morís J. (2019). Ahead of time: Early sentence slow cortical modulations associated to semantic prediction. NeuroImage, 189, 192-201.
[101] León-Cabrera P., Hjortdal A., Berthelsen S. G., Rodríguez-Fornells A., & Roll M. (2024). Neurophysiological signatures of prediction in language: A critical review of anticipatory negativities. Neuroscience and Biobehavioral Reviews, 160, 105624.
[102] León-Cabrera P., Rodríguez-Fornells A., & Morís J. (2017). Electrophysiological correlates of semantic anticipation during speech comprehension. Neuropsychologia, 99, 326-334.
[103] Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.
[104] Lewis A. G., Schoffelen J.-M., Schriefers H., & Bastiaansen M. (2016). A predictive coding perspective on beta oscillations during sentence-level language comprehension. Frontiers in Human Neuroscience, 10, 85.
[105] Li J., Hong B., Nolte G., Engel A. K., & Zhang D. (2021). Preparatory delta phase response is correlated with naturalistic speech comprehension performance. Cognitive Neurodynamics, 16(2), 337-352.
[106] Li J., Hong B., Nolte G., Engel A. K., & Zhang D. (2023). EEG-based speaker-listener neural coupling reflects speech-selective attentional mechanisms beyond the speech stimulus. Cerebral Cortex, bhad347.
[107] Li Z., Hong B., Nolte G., Engel A. K., & Zhang D. (2024). Speaker-listener neural coupling correlates with semantic and acoustic features of naturalistic speech. Social Cognitive and Affective Neuroscience, 19(1), nsae051.
[108] Li, Z., & Zhang, D. (2023). How does the human brain process noisy speech in real life? Insights from the second-person neuroscience perspective. Cognitive Neurodynamics, 18, 371-382.
[109] Marr, D., & Poggio, T. (1976). From understanding computation to understanding neural circuitry. Neurosciences Reasearch Program Bulletin, 15(3), 470-491.
[110] Mattys S. L., Davis M. H., Bradlow A. R., & Scott S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7-8), 953-978.
[111] Mesik J., Ray L., & Wojtczak M. (2021). Effects of age on cortical tracking of word-level features of continuous competing speech. Frontiers in Neuroscience, 15, 635126.
[112] Meyer, L. (2018). The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 48(7), 2609-2621.
[113] Mikolov T., Sutskever I., Chen K., Corrado G. S., & Dean J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, abs, 26.
[114] Miller G. A., Heise G. A., & Lichten W. (1951). The intelligibility of speech as a function of the context of the test materials. Journal of Experimental Psychology, 41(5), 329.
[115] Millet J., Caucheteux C., Boubenec Y., Gramfort A., Dunbar E., Pallier C., & King J. R. (2022). Toward a realistic model of speech processing in the brain with self-supervised learning. Advances in Neural Information Processing Systems, 35, 33428-33443.
[116] Nieuwland M. S., Politzer-Ahles S., Heyselaar E., Segaert K., Darley E., Kazanina N., Von Grebmer Zu Wolfsthurn, S., & Huettig F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. eLife, 7, e33468.
[117] Norris D., McQueen J. M., & Cutler A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition, and Neuroscience, 31(1), 4-18.
[118] Nour. E. S., Brothers T., Wang L., Spratling M., & Kuperberg G. R. (2024). A predictive coding model of the N400. Cognition, 246, 105755.
[119] Obleser, J., & Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain. Trends in Cognitive Sciences, 23(11), 913-926.
[120] Obleser, J., & Kotz, S. A. (2011). Multiple brain signatures of integration in the comprehension of degraded speech. NeuroImage, 55(2), 713-723.
[121] Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly. Journal of Memory and Language, 31(6), 785-806.
[122] Parr T., Pezzulo G., & Friston, K. (2022). Active inference: The free energy principle in mind, brain, and behavior MIT Press The free energy principle in mind, brain, and behavior. MIT Press.
[123] Pashler, H., & Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7(6), 531-536.
[124] Pennington J., Socher R., & Manning C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 Conference on empirical methods in natural language processing (EMNLP), 1532-1543.
[125] Piantadosi S. T., Muller D. C. Y., Rule J. S., Kaushik K., Gorenstein M., Leib E. R., & Sanford E. (2024). Why concepts are (probably) vectors. Trends in Cognitive Sciences, 28(9), 844-856.
[126] Piantadosi S. T., Tily H., & Gibson E. (2012). The communicative function of ambiguity in language. Cognition, 122(3), 280-291.
[127] Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychological Bulletin, 144(10), 1002-1044.
[128] Pulvermüller, F., & Grisoni, L. (2020). Semantic prediction in brain and mind. Trends in Cognitive Sciences, 24(10), 781-784.
[129] Rabovsky M., Hansen S. S., & McClelland J. L. (2018). Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nature Human Behaviour, 2(9), 693-705.
[130] Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.
[131] Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495-505.
[132] Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese BERT-Networks ArXiv.
[133] Roark B., Bachrach A., Cardenas C., & Pallier C. (2009). Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing. Proceedings of the 2009 Conference on empirical methods in natural language processing.
[134] Roll M., Söderström P., Horne M., & Hjortdal A. (2023). Pre-activation negativity (PrAN): a neural index of predictive strength of phonological cues. Laboratory Phonology, 14(1), 1.
[135] Romei L., Wambacq I. J. A., Besing J., Koehnke J., & Jerger J. (2011). Neural indices of spoken word processing in background multi-talker babble. International Journal of Audiology, 50(5), 321-333.
[136] Ryskin, R., & Fang, X. (2021). The many timescales of context in language processing. In K. D. Federmeier & L. Sahakyan (Eds.), Psychology of Learning and Motivation (pp. 201-243). Elsevier.
[137] Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next? Trends in Cognitive Sciences, 27(11), 1032-1052.
[138] Salvatori T., Mali A., Buckley C. L., Lukasiewicz T., Rao R. P. N., Friston K., & Ororbia A. (2025). A survey on brain-inspired deep learning via predictive coding. ArXiv.
[139] Schijndel, M. van, & Linzen, T. (2018). Can entropy explain successor surprisal effects in reading? ArXiv.
[140] Schilbach L., Timmermans B., Reddy V., Costall A., Bente G., Schlicht T., & Vogeley K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393-414.
[141] Schmitt L. M., Erb J., Tune S., Rysop A. U., Hartwigsen G., & Obleser J. (2021). Predicting speech from a cortical hierarchy of event-based time scales. Science Advances, 7(49), eabi6070.
[142] Schrimpf M., Blank I., Tuckute G., Kauf C., Hosseini E. A., Kanwisher N., Tenenbaum J., & Fedorenko E. (2021). The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences of the United States of America, 118(45), e2105646118.
[143] Shain C., Meister C., Pimentel T., Cotterell R., & Levy R. (2024). Large-scale evidence for logarithmic effects of word predictability on reading time. Proceedings of the national academy of sciences, 121(10), e2307876121.
[144] Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841-859.
[145] Shannon, C. E. (1948). A mathematical theory of communication. The Bell system Technical Journal, 27(3), 379-423.
[146] Smith, E. C., & Lewicki, M. S. (2006). Efficient auditory coding. Nature, 439(7079), 978-982.
[147] Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302-319.
[148] Sonkusare S., Breakspear M., & Guo C. (2019). Naturalistic stimuli in neuroscience: Critically acclaimed. Trends in Cognitive Sciences, 23(8), 699-714.
[149] Staub, A. (2025). Predictability in language comprehension: Prospects and problems for surprisal. Annual Review of Linguistics, 11(1), 17-34.

基金

* 本研究得到国家语委科研项目(ZDA145-18)、国家社会科学基金重大项目(24&ZD251)、清华大学研究生教育教学改革项目(202504Z005)和清华大学教学改革项目(DX02_20)的资助

PDF(515 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/