风险感知驱动的网络亲社会行为及其对非常规突发事件发展模式的影响*

白麒钰, 黄柯依, 韩思嘉, 陈尚仪, 刘阔, 张玥, 李劭, 罗思阳

心理科学 ›› 2025, Vol. 48 ›› Issue (4) : 1009-1023.

PDF(2367 KB)
中文  |  English
PDF(2367 KB)
心理科学 ›› 2025, Vol. 48 ›› Issue (4) : 1009-1023. DOI: 10.16719/j.cnki.1671-6981.20250420
计算建模与人工智能

风险感知驱动的网络亲社会行为及其对非常规突发事件发展模式的影响*

  • 白麒钰1, 黄柯依2, 韩思嘉1, 陈尚仪3, 刘阔4, 张玥3, 李劭3, 罗思阳**3
作者信息 +

The Influence of Risk Perception-Driven Online Prosocial Behavior on the Development Patterns of Unconventional Emergencies

  • Bai Qiyu1, Huang Keyi2, Han Sijia1, Chen Shangyi3, Liu Kuo4, Zhang Yue3, Li Shao3, Luo Siyang3
Author information +
文章历史 +

摘要

非常规突发事件下,网络亲社会行为是帮助整合资源、恢复现实世界秩序的重要渠道。研究探究风险情境下风险感知是否会驱动人们更倾向于做出网络亲社会行为及其如何进一步影响非常规突发事件的走向。研究1采用问卷法,结合恐惧管理理论,验证了风险感知经由本体安全感对网络亲社会行为的影响以及健康自我效能感的调节作用;研究2采用基于主体的建模技术(agent based model, ABM)建模预测了网络亲社会行为通过调节医疗资源有效分配,有效减少疫情峰值人数、缩短疫情持续时间。研究拓展了对网络亲社会行为动因的理解以及对影响非常规突发事件走向的预测,启示人们通过增进网络亲社会行为对风险事件施加正向的影响。

Abstract

With deep involvement in internet practices, online space has become an important place for individuals’ prosocial behavior. Online prosocial behavior, characterized by voluntary acts in digital spaces aimed at benefiting others, plays a significant role in this context. Under unconventional emergencies, the internet becomes a virtual living environment that the public relies on, and online prosocial behavior becomes an important channel to help integrate resources and restore order in the real world. This study explores the mechanisms that drive individuals to engage in online prosocial behaviors when unconventional emergencies pose risks in the real space, and further explores how online prosocial behaviors driven by risk perceptions can further influence the direction of unconventional emergencies in the real world.
Study 1 utilized a questionnaire-based approach, gathering a substantial sample of 917 participants for analysis using SPSS software. Grounded in the Terror Management Theory (TMT), the study constructed a moderated mediation model to examine the effect of risk perception on online prosocial behavior. Specifically, it considered the mediating role of ontological security—individuals’ sense of safety and stability in their environment—and the moderating role of health self-efficacy, which reflects individuals' belief in their ability to manage their health and well-being during crises. The results indicated that individuals experiencing higher levels of risk perception were more inclined to engage in online prosocial actions, with this inclination mediated by a reduced sense of ontological security. Furthermore, health self-efficacy played a significant moderating role. That is, individuals with higher self-efficacy demonstrated a stronger tendency to translate their security-seeking behaviors into prosocial actions. These findings highlight the complex interplay between psychological factors and the motivation to engage in prosocial behavior in digital spaces.
Study 2 employed Agent-Based Modeling (ABM) to simulate the practical effects of online prosocial behavior during a public health crisis, focusing particularly on online donations as a key manifestation of such behavior. Based on the two-space coupling model, the results of the model prediction showed that online donation behavior reduces the number of people at the peak of the epidemic and shortens the duration by regulating the effective allocation of medical resources. Risk awareness in crisis situations can stimulate the public's online helping behavior, and the spontaneous increase in donation behavior reduces the number of people infected during the peak of the epidemic and shortens the number of days to reach the peak as well as the overall number of days of the epidemic. People donate out of a desire to improve the well-being of the rest of the population, and online donation behaviors enable the public to respond more effectively to the epidemic threat by allocating more resources to those in need.
This research contributes to our understanding of the psychological and practical drivers of online prosocial behavior during emergencies. It broadens the application of Terror Management Theory by extending its relevance to online contexts and underscores the role of health self-efficacy as a critical factor in shaping prosocial responses. Additionally, the study suggests that promoting online prosocial behavior serves a dual purpose: it helps individuals regain psychological stability during crises and contributes to a more effective societal response.
In conclusion, this study highlights the dual importance of integrating digital and physical spaces in the context of crisis management. By providing insights for policymakers, it underscores the potential to leverage online engagement to enhance crisis response and community resilience. Encouraging online prosocial behaviors can create a supportive environment that empowers individuals and communities, enabling them to navigate the challenges posed by unconventional emergencies more effectively. As societies continue to rely on digital platforms, understanding and promoting these behaviors will be essential to foster collective well-being in times of crisis.

关键词

风险感知 / 网络亲社会行为 / 恐惧管理理论 / 基于主体建模 / 非常规突发事件

Key words

risk perception / online prosocial behavior / terror management theory / ABM / unconventional emergencies

引用本文

导出引用
白麒钰, 黄柯依, 韩思嘉, 陈尚仪, 刘阔, 张玥, 李劭, 罗思阳. 风险感知驱动的网络亲社会行为及其对非常规突发事件发展模式的影响*[J]. 心理科学. 2025, 48(4): 1009-1023 https://doi.org/10.16719/j.cnki.1671-6981.20250420
Bai Qiyu, Huang Keyi, Han Sijia, Chen Shangyi, Liu Kuo, Zhang Yue3, Li Shao, Luo Siyang. The Influence of Risk Perception-Driven Online Prosocial Behavior on the Development Patterns of Unconventional Emergencies[J]. Journal of Psychological Science. 2025, 48(4): 1009-1023 https://doi.org/10.16719/j.cnki.1671-6981.20250420

参考文献

[1] 安晓璐. (2005). 浅析虚拟社区中的利他行为. 传媒观察, 3, 43-44.
[2] 陈思思. (2015). 大学生网络亲社会行为及影响因素研究 (硕士学位论文). 北京林业大学 .
[3] 付萌萌,张建卫,杨文亚,冷钰冰. (2023). 亲社会还是偏差?网络社会行为的情绪驱动机制. 第二十五届全国心理学学术会议摘要集——博.
[4] 何亚男. (2020). 基于解释水平理论的非常规突发事件风险认知量表编制研究 (硕士学位论文). 西南交通大学, 成都.
[5] 李礼,徐达. (2023). 网络社会交往视域中微信点赞的动机及行为归因分析. 杭州师范大学学报(社会科学版), 45(3), 89-100.
[6] 刘新燕, 伍海兰, 涂菊, 王璐. (2024). 一心多用的双刃剑效应:多任务对亲社会行为的影响. 心理学报, 56(12), 1800-1820.
[7] 王立萍. (2021). 家庭教养方式对大学生网络亲社会行为的影响 (硕士学位论文). 吉林大学, 长春.
[8] 徐岚, 蒋怡然, 崔楠, 张留霞, 赵帅勤. (2020). 最心安处是吾乡:本体安全感威胁对家乡品牌偏好的影响. 心理学报, 52(4), 513-527.
[9] 闫岩, 温婧. (2020). 新冠疫情早期的媒介使用、风险感知与个体行为. 新闻界, 6, 50-61.
[10] 叶凤琴, 莫莉. (2020). 重大公共事件中主流媒体使用如何影响网络亲社会行为——感动情绪和网络效能感的双中介作用. 广告大观(理论版), 6, 46-55.
[11] 俞国良, 靳娟娟. (2022). 本体安全感:心理健康研究的社会学取向. 河北学刊 ,42(2), 188-196.
[12] 张丹. (2022). 大学生社交网站自我呈现与网络利他行为的关系:网络社会支持与网络人际信任的链式中介作用 (硕士学位论文). 河南大学, 开封 .
[13] 张敏, 王乐乐, 刘静. (2014). 感戴对网络利他行为的影响:现实利他行为的中介作用. 中国特殊教育, 4, 65-70.
[14] 赵倩. (2018). 大学生道德认同与网络利他行为:网络道德与性别的作用. 中国临床心理学杂志, 26(6), 1226-1229.
[15] Acedo-Carmona, C., & Gomila, A. (2016). A critical review of Dunbar' s social brain hypothesis. Revista Internacional de Sociología, 74(3), e038.
[16] Arndt J., Schimel J., & Goldenberg J. L. (2003). Death can be good for your health: Fitness intentions as a proximal and distal defense against mortality salience. Journal of Applied Social Psychology, 33(8), 1726-1746.
[17] Becker, G. S. (1974). A theory of social interactions. Journal of Political Economy, 82(6), 1063-1093.
[18] Bernhard H., Fischbacher U., & Fehr E. (2006). Parochial altruism in humans. Nature, 442(7105), 912-915.
[19] Bosancianu C. M., Powell S., & Bratović E. (2013). Social capital and pro-social behavior online and offline. International Journal of Internet Science, 8(1). 49-68.
[20] Brownell, C. A., & Early Social Development Research Lab. (2016). Prosocial behavior in infancy: The role of socialization. Child Development Perspectives, 10(4), 222-227.
[21] Brügger, A. (2020). Understanding the psychological distance of climate change: The limitations of construal level theory and suggestions for alternative theoretical perspectives. Global Environmental Change, 60, 102023.
[22] Buckworth, J. (2017). Promoting self-efficacy for healthy behaviors. ACSM's Health and Fitness Journal, 21(5), 40-42.
[23] Burke B. L., Martens A., & Faucher E. H. (2010). Two decades of terror management theory: A meta-analysis of mortality salience research. Personality and Social Psychology Review, 14(2), 155-195.
[24] Cameron, L., & Shah, M. (2015). Risk-taking behavior in the wake of natural disasters. Journal of Human Resources, 50(2), 484-515.
[25] Canning, B. A. (2020). An antidote to fear: Exploring death reflection as a predictor of pro-social values (Master thesis unpublished). Colorado State University.
[26] Cao Y., Dai J., Wang Z., Zhang Y., Shen X., Liu Y., & Tian Y. (2024). Systematic review: Text processing algorithms in machine learning and deep learning for mental health detection on social media. ArXiv.
[27] De Bruin, W. B., & Bennett, D. (2020). Relationships between initial COVID-19 risk perceptions and protective health behaviors: A national survey. American Journal of Preventive Medicine, 59(2), 157-167.
[28] Duan Q., Chen S., Yuan H., Zhang Y., & Luo S. (2025). The psychological impact of reopening after COVID-19 lockdowns in China: Threat perception, affect and moral conflict. Social Science and Medicine, 365, 117611.
[29] Elliot, A. J., & Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72(1), 218-232.
[30] Erreygers S., Vandebosch H., Vranjes I., Baillien E., & De Witte H. (2018). Development of a measure of adolescents' online prosocial behavior. Journal of Children and Media, 12(4), 448-464.
[31] Erreygers S., Vandebosch H., Vranjes I., Baillien E., & De Witte H. (2019). Feel good, do good online? Spillover and crossover effects of happiness on adolescents' online prosocial behavior. Journal of Happiness Studies, 20(4), 1241-1258.
[32] Fairlamb, S., & Courtney, E. (2022). An existential perspective on interpersonal closeness and social distancing during the COVID-19 pandemic. Psychology and Health, 1059-1076.
[33] Firth J., Torous J., Stubbs B., Firth J. A., Steiner G. Z., Smith L., Alvarez-Jimenez M., Gleeson J., Vancampfort D., Armitage C. J., & Sarris J. (2019). The "online brain": How the Internet may be changing our cognition. World Psychiatry, 18(2), 119-129.
[34] Giddens B. A.(1990). The consequences of modernity. Stanford University Press..
[35] Grimalda G., Buchan N. R., Ozturk O. D., Pinate A. C., Urso G., & Brewer M. B. (2021). Exposure to COVID-19 is associated with increased altruism, particularly at the local level. Scientific Reports, 11(1), 18950.
[36] Han, R. (2023). More talk, more support? The effects of social network interaction and social network evaluation on social support via social media. Psychology Research and Behavior Management, 16, 3857-3866.
[37] Hawkins, R. L., & Maurer, K. (2011). ‘You fix my community, you have fixed my life’: The disruption and rebuilding of ontological security in New Orleans. Disasters, 35(1), 143-159.
[38] Helliwell J. F., Aknin L. B., Shiplett H., Huang H., & Wang S. (2017). Social capital and prosocial behaviour as sources of well-being. National Bureau of Economic Research.
[39] Huang G., Yu X., Long Q., Huang L., & Luo S. (2022). The impact of economic freedom on COVID-19 pandemic control: The moderating role of equality. Globalization and Health, 18(1), 15.
[40] Huang L., Sun Y., & Luo S. (2022). The impact of individualism on the efficiency of epidemic control and the underlying computational and psychological mechanisms. Acta Psychologica Sinica, 54(5), 497-515.
[41] Hunter, E., & Kelleher, J. D. (2022). Validating and testing an agent-based model for the spread of COVID-19 in Ireland. Algorithms, 15(8), 270.
[42] Hunter E., Mac Namee B., & Kelleher J. (2018). An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS ONE, 13(12), e0208775.
[43] Lee S. Y., Hwang H., Hawkins R., & Pingree S. (2008). Interplay of negative emotion and health self-efficacy on the use of health information and its outcomes. Communication Research, 35(3), 358-381.
[44] Li F., Whalley J., & Williams H. (2001). Between physical and electronic spaces: The implications for organisations in the networked economy. Environment and Planning A, 33(4), 699-716.
[45] Liu Y., Shen X., Zhang Y., Wang Z., Tian Y., Dai J., & Cao Y. (2024). A systematic review of machine learning approaches for detecting deceptive activities on social media: Methods, challenges, and biases. ArXiv.
[46] Luo S., Yuan H., Wang Y., & Bond M. H. (2024). Culturomics: Taking the cross-scale, interdisciplinary science of culture into the next decade. Neuroscience and Biobehavioral Reviews, 167, 105942.
[47] Macal, C., North, M. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4, 151-162.
[48] Oh H. J., Lauckner C., Boehmer J., Fewins-Bliss R., & Li K. (2013). Facebooking for health: An examination into the solicitation and effects of health-related social support on social networking sites. Computers in Human Behavior, 29(5), 2072-2080.
[49] Pastor Y., Pérez-Torres V., Thomas-Currás H., Lobato-Rincón L. L., López-Sáez M. Á., & García A. (2024). A study of the influence of altruism, social responsibility, reciprocity, and the subjective norm on online prosocial behavior in adolescence. Computers in Human Behavior, 154, 108156.
[50] Regis S., Manicom O., & Doncescu A. (2023). An agent-based model of COVID-19 pandemic and its variants using fuzzy subsets and real data applied in an island environment. The Knowledge Engineering Review, 38, e2.
[51] Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285.
[52] Su Q., McAvoy A., Mori Y., & Plotkin J. B. (2022). Evolution of prosocial behaviours in multilayer populations. Nature Human Behaviour, 6(3), 338-348.
[53] Taylor M., Wells G., Howell G., & Raphael B. (2012). The role of social media as psychological first aid as a support to community resilience building. Australian Journal of Emergency Management, 27(1), 20-26.
[54] Tyler, T. R., & Cook, F. L. (1984). The mass media and judgments of risk: Distinguishing impact on personal and societal level judgments. Journal of Personality and Social Psychology, 47(4), 693.
[55] Ullah, F., & Lee, S. (2016). Social content recommendation based on spatial-temporal aware diffusion modeling in social networks. Symmetry, 8(9), 89.
[56] Vail K. E., Rothschild Z. K., Weise D. R., Solomon S., Pyszczynski T., & Greenberg J. (2010). A terror management analysis of the psychological functions of religion. Personality and Social Psychology Review, 14(1), 84-94.
[57] Viguerie A., Lorenzo G., Auricchio F., Baroli D., Hughes T. J., Patton A., Reali A., Yankeelov T. E., & Veneziani A. (2021). Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion. Applied Mathematics Letters, 111, 106617.
[58] Weinberg N., Schmale J., Uken J., & Wessel K. (1996). Online help: Cancer patients participate in a computer-mediated support group. Health and Social Work, 21(1), 24-29.
[59] Wellman, B., & Gulia, M. (2018). Net-surfers don' t ride alone: Virtual communities as communities. In B. Wellman (Ed.), Networks in the global village (pp. 331-366). Routledge.
[60] Wright, M. F., & Li, Y. (2011). The associations between young adults' face-to-face prosocial behaviors and their online prosocial behaviors. Computers in Human Behavior, 27(5), 1959-1962.
[61] Yuan H., Long Q., Huang G., Huang L., & Luo S. (2022). Different roles of interpersonal trust and institutional trust in COVID-19 pandemic control. Social Science and Medicine, 293, 114677.
[62] Yuan, H., & Luo, S. (2024). Representation similarity analysis-a new perspective to study sociocultural change: Taking the mental health of elderly people as an example. Acta Psychologica Sinica, 56(7), 938.

基金

*本研究得到国家自然科学基金(32371125,32071081,72304018)和青年人才托举工程 (2023QNRC001)的资助

PDF(2367 KB)

评审附件

Accesses

Citation

Detail

段落导航
相关文章

/