[1] 郭磊, 杨静, 宋乃庆. (2018). 谱聚类算法在不同属性层级结构诊断评估中的应用. 心理科学, 41(3), 735-742. [2] 康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法: 多级评分的聚类分析. 心理学报, 47(8), 1077-1088. [3] 涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568. [4] 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41(2), 466-474. [5] 王立君, 唐芳, 詹沛达. (2020). 基于认知诊断测评的个性化补救教学效果分析: 以“一元一次方程”为例. 心理科学, 43(6), 1490-1497. [6] Chen, J. S. (2017). A residual-based approach to validate Q-Matrix specifications. Applied Psychological Measurement, 41(4), 277-293. [7] Chiu C. Y., Douglas J., & Li X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633-665. [8] Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618. [9] Chiu, C. Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30(2), 225-250. [10] Chiu C. Y., Sun Y., & Bian Y. H. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375. [11] Cui, Y., & Li, J. (2015). Evaluating person fit for cognitive diagnostic assessment. Applied Psychological Measurement, 39(3), 223-238. [12] de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362. [13] de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. [14] de la Torre, J., & Chiu, C. Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273. [15] Hansen M., Cai L., Monroe S., & Li Z. (2016). Limited-information goodness-of-fit testing of diagnostic classification item response models. British Journal of Mathematical and Statistical Psychology, 69(3), 225-252. [16] Liu J. C., Xu G. J., & Ying Z. L. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564. [17] Liu R., Huggins-Manley A. C., & Bulut O. (2018). Retrofitting diagnostic classification models to responses from IRT-based assessment forms. Educational and Psychological Measurement, 78(3), 357-383. [18] Liu Y. L., Tian W., & Xin T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3-26. [19] Liu Y. L., Xin T., Andersson B., & Tian W. (2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72(1), 18-37. [20] Ma, W. C., & de la Torre, J. (2020). An empirical Q-matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology, 73(1), 142-163. [21] Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49(4), 305-328. [22] Nájera P., Sorrel M. A., & Abad F. J. (2019). Reconsidering cutoff points in the general method of empirical Q-matrix validation. Educational and Psychological Measurement, 79(4), 727-753. [23] Nájera P., Sorrel M. A., de la Torre J., & Abad F. J. (2021). Balancing fit and parsimony to improve Q-matrix validation. British Journal of Mathematical and Statistical Psychology, 74(1), 110-130. [24] Philipp M., Strobl C., de la Torre J., & Zeileis A. (2018). On the estimation of standard errors in cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 43(1), 88-115. [25] Ren H., Xu N. N., Lin Y. X., Zhang S. M., & Yang T. (2021). Remedial teaching and learning from a cognitive diagnostic model perspective: Taking the data distribution characteristics as an example. Frontiers in Psychology, 12, Article 628607. [26] Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333-343. [27] Wang D. X., Cai Y., & Tu D. B. (2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix. Multivariate Behavioral Research, 56(3), 514-526. [28] Wang W. Y., Song L. H., Ding S. L., Meng Y. R., Cao C. X., & Jie Y. J. (2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459. [29] Xu, G. J., & Shang, Z. R. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284-1295. |