摘要: 认知诊断模型选择是认知诊断评估中重要研究问题之一。在实际应用中实践者并不知道真正拟合数据的模型,通常会用模型拟合指标检验模型与数据的拟合程度。从测量结果质量来看,除保证模型与数据拟合之外,还需要重点评价模型诊断结果的信度和效度等。考虑到以往研究大都采用基于信息量的拟合指标去判定模型与数据的匹配性,本研究提出综合考虑模型拟合指标与信度指标用于模型选择或评价模型误设。考虑实验因素为真实模型或分析模型(DINA模型、G-DINA模型、R-RUM模型)、样本量、题量和属性个数,在五因素(3×3×2×2×2)实验设计条件下,比较Bootstrap区间估计的属性分类一致性信度平均数与标准误和常用的拟合统计量-2LL、AIC、BIC对正确模型的选择率。结果表明:-2LL在题目数量多的情况下表现较好,而AIC、BIC在被试量较大的情况下表现较好,在不同的研究条件下,-2LL、AIC、BIC的模型选择率很不稳定,而用Bootstrap法估计的属性分类一致性信度平均数和标准误在不同研究条件的模型选择率较稳定,总体表现较好。