Journal of Psychological Science ›› 2024, Vol. 47 ›› Issue (4): 803-811.DOI: 10.16719/j.cnki.1671-6981.20240405
• General Psychology, Experimental Psychology & Ergonomics • Previous Articles Next Articles
Huang Yixia, Wang Jinxia, Lei Yi
Online:
2024-07-20
Published:
2024-07-17
黄益霞, 王金霞, 雷怡**
通讯作者:
** 雷怡,E-mail : leiyi821@vip.sina.com
基金资助:
Huang Yixia, Wang Jinxia, Lei Yi. Encoding, Consolidation, Retrieval and Intervention of Conditioned Fear Extinction Memory[J]. Journal of Psychological Science, 2024, 47(4): 803-811.
黄益霞, 王金霞, 雷怡. 条件性恐惧消退记忆的编码、巩固、提取及其干预*[J]. 心理科学, 2024, 47(4): 803-811.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jps.ecnu.edu.cn/EN/10.16719/j.cnki.1671-6981.20240405
[1] 雷怡, 王金霞, 陈庆飞, 张文海, 梅颖. (2017). 分类和概念对恐惧泛化的影响机制. 心理科学, 40(5), 1266-1273. [2] Aksoy-Aksel A., Gall A., Seewald A., Ferraguti F., & Ehrlich I. (2021). Midbrain dopaminergic inputs gate amygdala intercalated cell clusters by distinct and cooperative mechanisms in male mice. eLife, 10, Article e63708. [3] Anderson, M. C., & Floresco, S. B. (2022). Prefrontal-hippocampal interactions supporting the extinction of emotional memories: The retrieval stopping model. Neuropsychopharmacology, 47(1), 180-195. [4] Apšvalka D., Ferreira C. S., Schmitz T. W., Rowe J. B., & Anderson M. C. (2022). Dynamic targeting enables domain-general inhibitory control over action and thought by the prefrontal cortex. Nature Communications, 13(1), Article 274. [5] Berretta S., Pantazopoulos H., Caldera M., Pantazopoulos P., & Paré D. (2005). Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience, 132(4), 943-953. [6] Bloodgood D. W., Sugam J. A., Holmes A., & Kash T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), Article 60. [7] Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research, 76(2), 192-203. [8] Bottary R., Seo J., Daffre C., Gazecki S., Moore K. N., Kopotiyenko K., & Pace-Schott E. F. (2020). Fear extinction memory is negatively associated with REM sleep in insomnia disorder. Sleep, 43(7), Article zsaa007. [9] Burgos-Robles A., Vidal-Gonzalez I., Santini E., & Quirk G. J. (2007). Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron, 53(6), 871-880. [10] Chen W. H., Wang Y., Wang X. Q., & Li H. (2017). Neural circuits involved in the renewal of extinguished fear. IUBMB Life, 69(7), 470-478. [11] Cho J. H., Deisseroth K., & Bolshakov V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 1491-1507. [12] Cisler J. M., Privratsky A. A., Sartin-Tarm A., Sellnow K., Ross M., Weaver S., & Kilts C. D. (2020). L-DOPA and consolidation of fear extinction learning among women with posttraumatic stress disorder. Translational Psychiatry, 10(1), Article 287. [13] Craske M. G., Kircanski K., Zelikowsky M., Mystkowski J., Chowdhury N., & Baker A. (2008). Optimizing inhibitory learning during exposure therapy. Behaviour Research and Therapy, 46(1), 5-27. [14] Craske M. G., Waters A. M., Bergman R. L., Naliboff B., Lipp O. V., Negoro H., & Ornitz E. M. (2008). Is aversive learning a marker of risk for anxiety disorders in children? Behaviour Research and Therapy, 46(8), 954-967. [15] De Jong J. W., Afjei S. A., Dorocic I. P., Peck J. R., Liu C., Kim C. K., & Lammel S. (2019). A Neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron, 101(1), 133-151.e7. [16] De Kleine R. A., Smits J. A. J., Hendriks G. J., Becker E. S., & van Minnen A. (2015). Extinction learning as a moderator of d-cycloserine efficacy for enhancing exposure therapy in posttraumatic stress disorder. Journal of Anxiety Disorders, 34, 63-67. [17] Depue B. E., Curran T., & Banich M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317(5835), 215-219. [18] Do-Monte F. H., Manzano-Nieves G., Quiñones-Laracuente K., Ramos-Medina L., & Quirk G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. The Journal of Neuroscience, 35(8), 3607-3615. [19] Dunsmoor J. E., Campese V. D., Ceceli A. O., LeDoux J. E., & Phelps E. A. (2015). Novelty-facilitated extinction: Providing a novel outcome in place of an expected threat diminishes recovery of defensive responses. Biological Psychiatry, 78(3), 203-209. [20] Ebrahimi C., Gechter J., Lueken U., Schlagenhauf F., Wittchen H. U., Hamm A. O., & Ströhle A. (2020). Augmenting extinction learning with D-cycloserine reduces return of fear: A randomized, placebo-controlled fMRI study. Neuropsychopharmacology, 45(3), 499-506. [21] Ebrahimi C., Koch S. P., Friedel E., Crespo I., Fydrich T., Ströhle A., & Schlagenhauf F. (2017). Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall. Neurobiology of Learning and Memory, 142, 209-217. [22] Gerlicher A. M. V., Tüscher O., & Kalisch R. (2018). Dopamine-dependent prefrontal reactivations explain long-term benefit of fear extinction. Nature Communications, 9(1), Article 4294. [23] Gerlicher A. M. V., Tüscher O., & Kalisch R. (2019). L-DOPA improves extinction memory retrieval after successful fear extinction. Psychopharmacology, 236(12), 3401-3412. [24] Gold A. L., Abend R., Britton J. C., Behrens B., Farber M., Ronkin E., & Pine D. S. (2020). Age differences in the neural correlates of anxiety disorders: An fMRI study of response to learned threat. The American Journal of Psychiatry, 177(5), 454-463. [25] Guo Y. H., Schmitz T. W., Mur M., Ferreira C. S., & Anderson M. C. (2018). A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence. Neuropsychologia, 108, 117-134. [26] Hikind, N., & Maroun, M. (2008). Microinfusion of the D1 receptor antagonist, SCH23390 into the IL but not the BLA impairs consolidation of extinction of auditory fear conditioning. Neurobiology of Learning and Memory, 90(1), 217-222. [27] Hugues S., Deschaux O., & Garcia R. (2004). Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. Learning and Memory, 11(5), 540-543. [28] Keller N. E., Hennings A. C., & Dunsmoor J. E. (2020). Behavioral and neural processes in counterconditioning: Past and future directions. Behaviour Research and Therapy, 125, Article 103532. [29] Kensinger, E. A., & Ford, J. H. (2020). Retrieval of emotional events from memory. Annual Review of Psychology, 71, 251-272. [30] Keyan, D., & Bryant, R. A. (2019). Acute exercise-induced enhancement of fear inhibition is moderated by BDNF Val66Met polymorphism. Translational Psychiatry, 9(1), Article 131. [31] Kim, W. B., & Cho, J. H. (2017). Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. The Journal of Neuroscience, 37(19), 4868-4882. [32] Lacagnina A. F., Brockway E. T., Crovetti C. R., Shue F., McCarty M. J., Sattler K. P., & Drew M. R. (2019). Distinct hippocampal engrams control extinction and relapse of fear memory. Nature Neuroscience, 22(5), 753-761. [33] Laurent, V., & Westbrook, R. F. (2008). Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learning and Memory, 15(9), 657-666. [34] Laurent V., Westbrook R. F., & Balleine B. W. (2022). Affective valence regulates associative competition in Pavlovian conditioning. Frontiers in Behavioral Neuroscience, 16, Article 801474. [35] Lee J. H., Lee S., & Kim J. H. (2017). Amygdala circuits for fear memory: A key role for dopamine regulation. The Neuroscientist, 23(5), 542-553. [36] Lucas K., Luck C. C., & Lipp O. V. (2018). Novelty-facilitated extinction and the reinstatement of conditional human fear. Behaviour Research and Therapy, 109, 68-74. [37] Luo R., Uematsu A., Weitemier A., Aquili L., Koivumaa J., McHugh T. J., & Johansen J. P. (2018). A dopaminergic switch for fear to safety transitions. Nature Communications, 9(1), Article 2483. [38] Marek R., Jin J. J., Goode T. D., Giustino T. F., Wang Q., Acca G. M., & Sah P. (2018). Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 21(3), 384-392. [39] Marek R., Sun Y. J., & Sah P. (2019). Neural circuits for a top-down control of fear and extinction. Psychopharmacology, 236(1), 313-320. [40] Marián M., Szőllősi Á., & Racsmány M. (2018). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex impairs long-term retention of reencountered memories. Cortex, 108, 80-91. [41] McGarry, L. M., & Carter, A. G. (2017). Prefrontal cortex drives distinct projection neurons in the basolateral amygdala. Cell Reports, 21(6), 1426-1433. [42] McLean C. P., Levy H. C., Miller M. L., & Tolin D. F. (2022). Exposure therapy for PTSD: A meta-analysis. Clinical Psychology Review, 91, Article 102115. [43] Ney L. J., Vicario C. M., Nitsche M. A., & Felmingham K. L. (2021). Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiology of Learning and Memory, 177, Article 107356. [44] Otis J. M., Namboodiri V. M. K., Matan A. M., Voets E. S., Mohorn E. P., Kosyk O., & Stuber G. D. (2017). Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature, 543(7643), 103-107. [45] Quirk, G. J. (2002). Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learning and Memory, 9(6), 402-407. [46] Rothbaum B. O., Price M., Jovanovic T., Norrholm S. D., Gerardi M., Dunlop B., & Ressler K. J. (2014). A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. The American Journal of Psychiatry, 171(6), 640-648. [47] Salinas-Hernández X. I., Vogel P., Betz S., Kalisch R., Sigurdsson T., & Duvarci S. (2018). Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife, 7, Article e38818. [48] Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23-32. [49] Senn V., Wolff S. B. E., Herry C., Grenier F., Ehrlich I., Gründemann J., & Lüthi A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81(2), 428-437. [50] Shiban Y., Schelhorn I., Pauli P., & Mühlberger A. (2015). Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behaviour Research and Therapy, 71, 45-53. [51] Singewald, N., & Holmes, A. (2019). Rodent models of impaired fear extinction. Psychopharmacology, 236(1), 21-32. [52] Smits J. A. J., Pollack M. H., Rosenfield D., Otto M. W., Dowd S., Carpenter J., & Hofmann S. G. (2020). Dose timing of D-cycloserine to augment exposure therapy for social anxiety disorder: A randomized clinical trial. JAMA Network Open, 3(6), Article e206777. [53] Soler-Cedeño O., Torres-Rodríguez O., Bernard F., Maldonado L., Hernández A., & Porter J. T. (2019). Plasticity of NMDA receptors at ventral hippocampal synapses in the infralimbic cortex regulates cued fear. eNeuro, 6(2), Article ENEURO.0354-18.2019. [54] Squire, L. R. (1986). Mechanisms of memory. Science, 232(4758), 1612-1619. [55] Strobel C., Marek R., Gooch H. M., Sullivan R. K. P., & Sah P. (2015). Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Reports, 10(9), 1435-1442. [56] Suarez-Jimenez B., Albajes-Eizagirre A., Lazarov A., Zhu X., Harrison B. J., Radua J., & Fullana M. A. (2020). Neural signatures of conditioning, extinction learning, and extinction recall in posttraumatic stress disorder: A meta-analysis of functional magnetic resonance imaging studies. Psychological Medicine, 50(9), 1442-1451. [57] Van't Wout M., Longo S. M., Reddy M. K., Philip N. S., Bowker M. T., & Greenberg B. D. (2017). Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain and Behavior, 7(5), Article e00681. [58] Wang Q., Jin J. J., & Maren S. (2016). Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiology of Learning and Memory, 134, 38-43. [59] Waters A. M., Kershaw R., & Lipp O. V. (2018). Multiple fear-related stimuli enhance physiological arousal during extinction and reduce physiological arousal to novel stimuli and the threat conditioned stimulus. Behaviour Research and Therapy, 106, 28-36. [60] Weele C. M. V., Siciliano C. A., & Tye K. M. (2019). Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Research, 1713, 16-31. [61] Xia J., Du Y. Q., Han J. Y., Liu G., & Wang X. M. (2015). D-cycloserine augmentation in behavioral therapy for obsessive-compulsive disorder: A meta-analysis. Drug Design, Development and Therapy, 9, 2101-2117. [62] Zbozinek T. D., Holmes E. A., & Craske M. G. (2015). The effect of positive mood induction on reducing reinstatement fear: Relevance for long term outcomes of exposure therapy. Behaviour Research and Therapy, 71, 65-75. [63] Zhang X. Y., Kim J., & Tonegawa S. (2020). Amygdala reward neurons form and store fear extinction memory. Neuron, 105(6), 1077-1093.e7. [64] Zimmerman, J. M., & Maren, S. (2010). NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. The European Journal of Neuroscience, 31(9), 1664-1670. |
[1] | Yang Wenjing, Liu Qi, Jia Hui. The Effect of Active Forgetting on Negative Emotion and its Cognitive Mechanism [J]. Journal of Psychological Science, 2024, 47(5): 1069-1079. |
[2] | Chen Peiqi, Zhang Jianxin, Zhang Yuqing, Fang Meixin, He Muye, Liu Dianzhi. Transposition Social Group Intervention Improves Symptoms and Empathy in Children with Autism [J]. Journal of Psychological Science, 2024, 47(3): 590-597. |
[3] | Xiao Jingjing, Zhang Lijuan, Chen Dengshui, Luo Shuang, Zhang Jinkun. Task Switching Affects Word Pairs Memory Performance: The Compensatory Effects of Retrieval Practice [J]. Journal of Psychological Science, 2024, 47(2): 308-315. |
[4] | Liu Xin, Mei Ying, Wu Qi, Lei Yi. Fear Reversal Learning: A New Method of Fear Regulation [J]. Journal of Psychological Science, 2024, 47(2): 494-501. |
[5] | Zhang Huan, Zuo Tianran, Liu Yibei, Liu Xiping, Yang Haibo. The Cognitive Mechanism of Socially Shared Retrieval-Induced Forgetting: Inhibition or Non-Inhibition? [J]. Journal of Psychological Science, 2023, 46(4): 802-808. |
[6] | Dai Yuqian, Dou Haoran, Lei Yi. The pure presence of others enhanced fear generalization [J]. Journal of Psychological Science, 2023, 46(3): 752-759. |
[7] | . Antecedents and intervention strategies of self-concept clarity: A new perspective from three facets of self-concept structural integration [J]. Journal of Psychological Science, 2023, 46(1): 170-180. |
[8] | Xin-Rui WANG. Positive Psychology intervention on postgraduate students based on WeChat Social Network platform [J]. Journal of Psychological Science, 2023, 46(1): 230-237. |
[9] | . The Influence of Self-construal on In and Out-group Reference Effects [J]. Journal of Psychological Science, 2022, 45(6): 1407-1413. |
[10] | . Mechanisms of Aging in Tip-of-the-Tongue Occurrence and Resolution during Lexical Access: A Two-step Approach Study [J]. Journal of Psychological Science, 2022, 45(6): 1390-1397. |
[11] | . How Does Cue Strength Affect The Retrieval Practice Effect: Evidence from ERPs [J]. Journal of Psychological Science, 2022, 45(5): 1106-1114. |
[12] | . Effect and mechanism of primary insomnia on sleep-dependent memory consolidation [J]. Journal of Psychological Science, 2022, 45(5): 1069-1076. |
[13] | . New evidence for different views of task switching [J]. Journal of Psychological Science, 2022, 45(5): 1085-1091. |
[14] | . Can?Retrieval?Practice?Promote?the?Learning?of?problem-solving??——Testing?Based?on??Retrieval [J]. Journal of Psychological Science, 2022, 45(4): 849-855. |
[15] | . The Longer the Retrieval Process, The Better the Memory Retention? The Moderating Effect of Material Difficulty [J]. Journal of Psychological Science, 2022, 45(3): 567-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||