刘春晖, 辛自强. (2010). 五—八年级学生分数概念的发展. 数学教育学报, 19(5), 60-63.倪玉菁. (1999). 五、六年级小学生对分数的意义和性质的理解. 心理发展与教育, 11(4), 26-30.张奠宙, 孙凡哲, 黄建弘, 黄荣良, 唐采斌. (2009). 小学数学研究. 北京:高等教育出版社.Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410-1419.Bright, G. W., Behr, M. J., Post, T. R., & Wachsmuth, I. (1988). Identifying fractions on number lines. Journal for Research in Mathematics Education, 19(3), 215-232.Charalambos, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293-316.Dehaene, S., Dupoux E, Mehler J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two digit number comparison. Journal of experimental psychology: Human perception and performance, 16(3), 626-641.Hannula, M. S. (2003). Locating fraction on a number line. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education held jointly with the 25th Conference of PME-NA (Vol. 3, pp. 3–24). Honolulu, USA: PME.Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rationalnumbers. In R. Lesh (Ed.). Number and measurement: Papers from a research workshop (pp. 101-144). Columbus, OH: ERIC/SMEAC.Kurt, G., & Cakiroglu, E. (2009). Middle grade students’ performances in translating among representations of fractions: A Turkish perspective. Learning and Individual Differences, 19(4), 404-410.Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. K. Lester (Ed.). Second handbook of research on mathematics teaching and learning (pp. 629–667). Charlotte: Information Age Publishing.Meert, G., Grégoire, J., & No?l, M. P. (2009). Rational numbers: Componential vs. holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62, 1598-1616.Meert, G., Grégoire, J., & No?l, M. P. (2010a). Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fractions. Acta Psychologica, 135, 284-292.Meert, G., Grégoire, J., & No?l, M. P. (2010b). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107, 244-259.Moss, J., & Case, R. (1999). Developing children's understanding of the rational numbers: A new model and experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122-147.Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519-1520.Ni, Y. J., & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 27-52.Pearn, C., & Stephens, M. (2004). Why do you have to probe to discover what Year 8 students really think about fractions. In I. Putt, R. Faragher, & M. McLean (Eds.). Mathematics education for the third millennium: Towards 2010 (Vol. 2, pp. 430–437). Sydney: MERGA.Pearn, C., & Stephens, M. (2007). Whole number knowledge and number lines help develop fraction concepts. In J. Watson, & K. Beswick (Eds.). Mathematics: Essential research, essential practice (Vol. 2, pp. 601–610). Sydney: MERGA. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. P. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2), 274-278.Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101-140.Stafylidou, S., & Vosniadou, S. (2004). The development of student’s understanding of the numerical value of fractions. Learning and Instruction, 14, 508-518. |