心理科学 ›› 2022, Vol. 45 ›› Issue (3): 754-760.
段海军1,王一凡1,王雪微1,2,韩炳淑1,2,赵汉璇1,2,阚越粹1,2,任维1
收稿日期:
2020-03-12
修回日期:
2020-11-19
出版日期:
2022-05-20
发布日期:
2022-05-22
通讯作者:
任维
作者简介:
2021-10-01
基金资助:
Received:
2020-03-12
Revised:
2020-11-19
Online:
2022-05-20
Published:
2022-05-22
摘要: 人类的很多创造性活动都在一定程度的应激状态下完成,探讨应激与创造力之间的关系成为当前的一个研究焦点。本文从神经内分泌的新视角,梳理了多巴胺、去甲肾上腺素与创造力之间的关系,以及二者在应激影响创造性认知加工过程中的内在神经调节机制,力图揭示应激如何通过神经递质调节大脑神经反应进而对创造力产生影响。未来研究应该综合运用多模态手段,继续探索HPA轴在应激影响创造力中的中介作用机制,并从神经内分泌系统动态平衡机制的视角构建神经科学分子水平-脑网络-行为的综合框架。
段海军 王一凡 王雪微 韩炳淑 赵汉璇 阚越粹 任维. 应激影响创造力的神经生理机制[J]. 心理科学, 2022, 45(3): 754-760.
段海军, 王雪微, 王博韬, 王彤星, 张心如, 王子娟, 胡卫平. (2017). 急性应激:诱发范式、测量指标及效果比较, 心理科学进展, 25(10), 1770–1780. 罗跃嘉, 林婉君, 吴健辉, 秦绍正. (2013). 应激的认知神经科学研究.?生理科学进展,?44(5), 345–353. Aberg, K. C., Doell, K. C., & Schwartz, S. (2016). The “creative right brain” revisited: Individual creativity and associative priming in the right hemisphere relate to hemispheric asymmetries in reward brainfunction. Cerebral Cortex,?27(10), 4946–4959. Acar, S., Chen, X., & Cayirdag, N. (2018). Schizophrenia and creativity: A meta-analytic review.?Schizophrenia research,?195, 23–31. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex.?Annual review of neuroscience,?9(1), 357–381. Alexander,x J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress.?Journal of Cognitive Neuroscience,?19(3), 468–478. Ali, N., & Pruessner, J. C. (2012). The salivary alpha amylase over cortisol ratio as a marker to assess dysregulations of the stress systems.?Physiology & Behavior,?106(1), 65–72. Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview Press. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.?Annu. Rev. Neurosci.,?28, 403–450. Baer, M., & Oldham, G. R. (2006). The curvilinear relation between experienced creative time pressure and creativity: moderating effects of openness to experience and support for creativity. Journal of Applied Psychology, 91(4), 963. Barnes, C. D., & Pompeiano, O. (1991). Neurobiology of the locus coeruleus (Vol. 88): Elsevier. Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95. Beversdorf, D. Q. (2019). Neuropsychopharmacological regulation of performance on creativity-related tasks. Current opinion in behavioral sciences, 27, 55–63. Beversdorf, D. Q., Carpenter, A. L., Alexander, J. K., Jenkins, N. T., Tilley, M. R., White, C. A., ... & Gu, H. H. (2018). Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: an exploratory pilot study. Cognitive and behavioral neurology: official journal of the Society for Behavioral and Cognitive Neurology, 31(2), 79. Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport, 10(13), 2763–2767. Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13–23. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain research reviews, 42(1), 33–84. Byron, K., Khazanchi, S., & Nazarian, D. (2010). The relationship between stressors and creativity: A meta-analysis examining competing theoretical models. Journal of Applied Psychology, 95(1), 201–212. Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology Biochemistry and Behavior, 88(3), 222–229. Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature reviews endocrinology, 5(7), 374. Chuderski, A., & Jastrz?bski, J. (2018). Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability. Journal of Experimental Psychology: General, 147(2), 257. Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27(20), 5506–5514. De Dreu, C. K., Baas, M., & Nijstad, B. A. (2008). Hedonic tone and activation level in the mood-creativity link: toward a dual pathway to creativity model.?Journal of personality and social psychology,?94(5), 739. Duan, H., Wang, X., Hu, W., & Kounios, J. (2019). Effects of acute stress on divergent and convergent problem-solving. Thinking & Reasoning, 1–19. Duan, H., Wang, X., Wang, Z., Xue, W., Kan, Y., Hu, W., & Zhang, F. (2019). Acute Stress Shapes Creative Cognition in Trait Anxiety. Frontiers in Psychology, 10, 1517. Eisenberger, R., & Aselage, J. (2009). Incremental effects of reward on experienced performance pressure: Positive outcomes for intrinsic interest and creativity.?Journal of Organizational Behavior,?30(1), 95–117. Eysenck, H. J. (1995).?Genius: The natural history of creativity(Vol. 12). Cambridge University Press. Goldfarb, E. V., Frob?se, M. I., Cools, R., & Phelps, E. A. (2017). Stress and cognitive flexibility: Cortisol increases are associated with enhanced updating but impaired switching. Journal of Cognitive Neuroscience, 29(1), 14–24. Goldmanrakic, P. S. (1992). Dopamine-mediated mechanisms of the prefrontal cortex. Seminars in Neuroscience, 4(2), 149–159. Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9(5), 369–379. Henckens, M. J., van der Marel, K., van der Toorn, A., Pillai, A. G., Fernández, G., Dijkhuizen, R. M., & Jo?ls, M. (2015). Stress-induced alterations in large-scale functional networks of the rodent brain.?Neuroimage,?105, 312–322. Hermans, E. J., Henckens, M. J., Jo?ls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37(6), 304–314. Holly, E. N., & Miczek, K. A. (2016). Ventral tegmental area dopamine revisited: Effects of acute and repeated stress. Psychopharmacology, 233(2), 163–186. Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metabolic Brain Disease, 27(3), 267–274. Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20(2), 199–204. Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: dopamine and creativity.?Journal of neurology,?256(5), 816–819. Kuypers, K. P. C. (2018). Out of the box: A psychedelic model to study the creative mind.?Medical hypotheses,?115, 13–16. Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiological reviews, 71(1), 155–234. Lhommée, E., Batir, A., Quesada, J. L., Ardouin, C., Fraix, V., Seigneuret, E., ... & Krack, P. (2014). Dopamine and the biology of creativity: lessons from Parkinson’s disease.?Frontiers in neurology,?5, 55. Lin, H., & Vartanian, O. (2018). A neuroeconomic framework for creative cognition.?Perspectives on Psychological Science,?13(6), 655–677. Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20(3), 214–226. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.?Annual review of neuroscience,?24(1), 167-202. Müller, B. C., Gerasimova, A., & Ritter, S. M. (2016). Concentrative meditation influences creativity by increasing cognitive flexibility. Psychology of Aesthetics, Creativity& the Arts, 10(3), 278–286. Nair, N., Hegarty II, J. P., Ferguson, B. J., Hecht, P. M., Tilley, M., Christ, S. E., & Beversdorf, D. Q. (2020). Effects of stress on functional connectivity during problem solving.?NeuroImage,?208, 116407. Narayanan, A., White, C. A., Saklayen, S., Scaduto, M. J., Carpenter, A. L., Abduljalil, A., . . . Beversdorf, D. Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder—a pilot study. Brain imaging and behavior, 4(2), 189-197. Neri, D. F., Wiegmann, D., Stanny, R. R., Shappell, S. A., McCardie, A., & McKay, D. L. (1995). The effects of tyrosine on cognitive performance during extended wakefulness. Aviation, space, and environmental medicine. Nguyen, T. A., & Zeng, Y. (2012). A theoretical model of design creativity: Nonlinear design dynamics and mental stress-creativity relation. Journal of Integrated Design & Process Science, 16(3), 65–88. Nijstad, B. A., De Dreu, C. K., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21(1), 34–77. Pajkossy, P., Sz?ll?si, á., Demeter, G., & Racsmány, M. (2017). Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: Evidence from pupillometry and gaze pattern analysis. Psychophysiology, 54(7). Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis) inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134(134), 110–120. Rooij, A. D., Vromans, R. D., & Dekker, M. (2018). Noradrenergic Modulation of Creativity: Evidence from Pupillometry. Creativity Research Journal, 30(4), 339–351. Sacramento, C. A., Fay, D., & West, M. A. (2013). Workplace duties or opportunities? Challenge stressors, regulatory focus, and creativity. Organizational Behavior and Human Decision Processes, 121(2), 141–157. Schuler, A. L., Tik, M., Sladky, R., Luft, C. D. B., Hoffmann, A., Woletz, M., ... & Windischberger, C. (2019). Modulations in resting state networks of subcortical structures linked to creativity.?NeuroImage,?195, 311–319. Seo, Y. W., Chae, S. W., & Lee, K. C. (2015). The impact of absorptive capacity, exploration, and exploitation on individual creativity: Moderating effect of subjective well-being. Computers in Human Behavior, 42, 68–82. Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651–668. Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., ... & Poldrack, R. A. (2016). The dynamics of functional brain networks: integrated network states during cognitive task performance.?Neuron,?92(2), 544–554. Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage, 51(2), 578–585. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 55–61. Usher, M., Cohen, J. D., Servanschreiber, D., Rajkowski, J., & Astonjones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance.?Science,?283(5401), 549–554. Vartanian, O. (2009). Variable attention facilitates creative problem solving.?Psychology of Aesthetics Creativity & the Arts,?3(3), 57–59. Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory.?Nature neuroscience,?10(3), 376–384. Vogelsang, D. A., & D'Esposito, M. (2018). Is There Evidence for a Rostral-Caudal Gradient in Fronto-Striatal Loops and What Role Does Dopamine Play?.?Frontiers in neuroscience,?12, 242. Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The creative thinking cognitive process influenced by acute stress in humans: an electroencephalography study. Stress, 22(4), 472–481. Ward, R. T., Smith, S. L., Kraus, B. T., Allen, A. V., Moses, M. A., & Simon-Dack, S. L. (2018). Alpha band frequency differences between low-trait and high-trait anxious individuals. NeuroReport,?29(2), 79–83. Xin, Y., Wu, J., Yao, Z., Guan, Q., Aleman, A., & Luo, Y. (2017). The relationship between personality and the response to acute psychological stress.?Scientific Reports, 7(1). Yu, Q., Zhang, S., & Zhang, J. H. (2017). Association of Dopamine D2 Receptor Gene with Creative Ideation.?Creativity Research Journal,?29(2), 108–113. |
[1] | 袁欢, 李楠. 激发灵感还是限制思维?线索作用于创造性思维的影响因素及认知机制*[J]. 心理科学, 2024, 47(5): 1096-1102. |
[2] | 伍嘉麒, 任枭, 贡喆. 攻击性对恶意创造力的影响:有调节的中介模型*[J]. 心理科学, 2024, 47(2): 367-374. |
[3] | 赵建彬. 运气感对创造力的影响:创造自我效能的中介作用 *[J]. 心理科学, 2023, 46(5): 1173-1179. |
[4] | 童璐琼, 朱睿. 环境温度对消费者创造力的影响*[J]. 心理科学, 2023, 46(4): 905-912. |
[5] | 沈承春 胡博华 何清华. 应激对模糊决策的影响:认知和神经机制[J]. 心理科学, 2023, 46(2): 500-508. |
[6] | 范苗苗 董书阳 王强 王争艳. 母亲将心比心与儿童创造力潜能:依恋的调节作用[J]. 心理科学, 2023, 46(2): 363-369. |
[7] | 孙浩 司思 廖真真 张景焕. TPH2基因rs4570625多态性和母亲权威教养对创造力的交互作用[J]. 心理科学, 2022, 45(5): 1136-1143. |
[8] | 任曦 刘亚东 赵小淋 李继文 杨娟*. 背景应激对静息态下大脑自发神经活动的影响[J]. 心理科学, 2022, 45(3): 530-537. |
[9] | 辛于雯 付萌萌 王珊 陈佩佩 张景焕. 自主性动机对创造力的预测:认知抑制的调节作用[J]. 心理科学, 2022, 45(1): 16-23. |
[10] | 杨群 张倩 朱兵 董艺珺 唐丰鹤 尚槿沂 田学红. 慢性应激事件对第三方惩罚的影响及其个体差异[J]. 心理科学, 2021, 44(6): 1506-1512. |
[11] | 程瑞 卢克龙 郝宁. 愤怒情绪对不同类型恶意创造力表现的影响[J]. 心理科学, 2021, 44(6): 1336-1345. |
[12] | 张迪 伍新春 田雨馨. 青少年创伤后应激障碍症状与网络成瘾症状的关系:惩罚敏感性和孤独感的中介及性别的调节[J]. 心理科学, 2021, 44(5): 1134-1140. |
[13] | 刘佳宁 吴奇 谢涛 俄眉 王金霞 雷怡. 应激激素对恐惧消退作用的神经生理机制[J]. 心理科学, 2021, 44(3): 559-566. |
[14] | 倪旭东 周琰喆. 子团队的结构与情感对团队创造力的影响[J]. , 2019, 42(3): 667-673. |
[15] | 王永跃 张玲. 心理弹性如何影响员工创造力:心理安全感与创造力自我效能感的作用[J]. 心理科学, 2018, 41(1): 118-124. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 554
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||