[1] Anderson, B. A. (2018). Controlled information processing, automaticity, and the burden of proof. Psychonomic Bulletin and Review, 25(5), 1814-1823. [2] Anderson, B. A., & Folk, C. L. (2012). Contingent involuntary motoric inhibition: The involuntary inhibition of a motor response contingent on top-down goals. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1348-1352. [3] Anderson, B. A., & Folk, C. L. (2014). Conditional automaticity in response selection: Contingent involuntary response inhibition with varied stimulus-response mapping. Psychological Science, 25(2), 547-554. [4] Anderson B. A., Folk C. L., Garrison R., & Rogers L. (2016). Mechanisms of habitual approach : Failure to suppress irrelevant responses evoked by previously reward-associated stimuli. Journal of Experimental Psychology: General, 145(6), 796-805. [5] Boehler C. N., Hopf J. M., Stoppel C. M., & Krebs R. M. (2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125(3), 498-503. [6] Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113. [7] Braver T. S., Krug M. K., Chiew K. S., Kool W., Andrew Westbrook J., Clement N. J., & Somerville L. H. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 14(2), 443-472. [8] Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4, 15. [9] Chiu, Y. C. (2019). Automating adaptive control with item-specific learning. Psychology of Learning and Motivation, 71, 1-37. [10] Chiu Y. C., Aron A. R., & Verbruggen F. (2012). Response suppression by automatic retrieval of stimulus-stop association: Evidence from transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 24(9), 1908-1918. [11] Crawford T. J., Higham S., Renvoize T., Patel J., Dale M., Suriya A., & Tetley S. (2005). Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer' s disease. Biological Psychiatry, 57(9), 1052-1060. [12] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. [13] Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143-149. [14] Faust M. E., Balota D. A., & Spieler D. H. (2001). Building episodic connections: Changes in episodic priming with age and dementia. Neuropsychology, 15(4), 626-637. [15] Flowers, J. H., & Wilcox, N. (1982). The effect of flanking context on visual classification: The joint contribution of interactions at different processing levels. Perception and Psychophysics, 32(6), 581-591. [16] Hübner, R., & Schlösser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin and Review, 17(6), 821-826. [17] Kiehl K. A., Smith A. M., Hare R. D., & Liddle P. F. (2000). An event-related potential investigation of response inhibition in schizophrenia and psychopathy. Biological Psychiatry, 48(3), 210-221. [18] Krebs, R. M., & Woldorff, M. G. (2017). Cognitive control and reward. In T. Egner (Ed.), The wiley handbook of cognitive control (pp. 422-439). John Wiley & Sons Ltd. [19] Lenartowicz A., Verbruggen F., Logan G. D., & Poldrack R. A. (2011). Inhibition-related activation in the right inferior frontal gyrus in the absence of inhibitory cues. Journal of Cognitive Neuroscience, 23(11), 3388-3399. [20] Leotti, L. A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 430-447. [21] Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective and Behavioral Neuroscience, 8(1), 99-112. [22] Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60(2-3), 193-210. [23] Matzke D., Verbruggen F., & Logan G. D. (2018). Stevens' handbook of experimental psychology and cognitive neuroscience. John Wiley & Sons, Inc. [24] Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48(2), 558-565. [25] Rushe T. M., Woodruff P. W. R., Murray R. M., & Morris R. G. (1999). Episodic memory and learning in patients with chronic schizophrenia. Schizophrenia Research, 35(4), 85-96. [26] van Gaal S., Ridderinkhof K. R., Scholte H. S., & Lamme, V. A. F. (2010). Unconscious activation of the prefrontal no-go network. Journal of Neuroscience, 30(11), 4143-4150. [27] Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: Associative learning in the Go/No-Go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649-672. [28] Yamaguchi, M., & Nishimura, A. (2018). Modulating proactive cognitive control by reward : Differential anticipatory effects of performance-contingent and non-contingent rewards. Psychological Research, 83(2), 258-274. |