[1] 陈安涛. (2019). 认知控制基本功能的神经机制. 生理学报, 71(1), 149-155. [2] 陆润豪, 张兴利, 施建农. (2021). 眼动技术在个体认知能力差异研究中的应用. 心理科学, 44(3), 552-558. [3] 杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. (2020). 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量. 心理科学进展, 28(7), 1029-1041. [4] Aminihajibashi S., Hagen T., Andreassen O. A., Laeng B., & Espeseth T. (2020). The effects of cognitive abilities and task demands on tonic and phasic pupil sizes. Biological Psychology, 156, Article 107945. [5] Aminihajibashi S., Hagen T., Foldal M. D., Laeng B., & Espeseth T. (2019). Individual differences in resting-state pupil size: Evidence for association between working memory capacity and pupil size variability. International Journal of Psychophysiology, 140, 1-7. [6] Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450. [7] Beatty J.,& Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 142-162). Cambridge University Press. [8] Chmielewski W. X., Mückschel M., Ziemssen T., & Beste C. (2017). The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Human Brain Mapping, 38(1), 68-81. [9] Critchley H. D., Tang J., Glaser D., Butterworth B., & Dolan R. J. (2005). Anterior cingulate activity during error and autonomic response. NeuroImage, 27(4), 885-895. [10] da Silva Castanheira K., LoParco S., & Otto A. R. (2021). Task-evoked pupillary responses track effort exertion: Evidence from task-switching. Cognitive, Affective, and Behavioral Neuroscience, 21(3), 592-606. [11] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. [12] Diede, N. T., & Bugg, J. M. (2017). Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 824-835. [13] Dippel G., Mückschel M., Ziemssen T., & Beste C. (2017). Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control. NeuroImage, 157, 575-585. [14] Duchowski A. T., Krejtz K., Gehrer N. A., Bafna T., & Bækgaard P. (2020). The low/high index of pupillary activity. Poster session presented at 2020 CHI conference on human factors in computing systems, Honolulu, HI, USA. [15] Giller F., Mückschel M., Ziemssen T., & Beste C. (2020). A possible role of the norepinephrine system during sequential cognitive flexibility-Evidence from EEG and pupil diameter data. Cortex, 128, 22-34. [16] Grueschow M., Kleim B., & Ruff C. C. (2020). Role of the locus coeruleus arousal system in cognitive control. Journal of Neuroendocrinology, 32(12), Article e12890. [17] Hershman R., Levin Y., Tzelgov J., & Henik A. (2021). Neutral stimuli and pupillometric task conflict. Psychological Research, 85(3), 1084-1092. [18] Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190-1192. [19] Hjortkjær J., Märcher-Rørsted J., Fuglsang S. A., & Dau T. (2020). Cortical oscillations and entrainment in speech processing during working memory load. European Journal of Neuroscience, 51(5), 1279-1289. [20] Hsu Y. F., Baird T., & Wang C. A. (2020). Investigating cognitive load modulation of distractor processing using pupillary luminance responses in the anti-saccade paradigm. European Journal of Neuroscience, 52(3), 3061-3073. [21] Isabella S. L., Urbain C., Cheyne J. A., & Cheyne D. (2019). Pupillary responses and reaction times index different cognitive processes in a combined Go/Switch incidental learning task. Neuropsychologia, 127, 48-56. [22] Jodoj E., Chiang C., & Aston-Jones G. (1998). Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience, 83(1), 63-79. [23] Joshi, S., & Gold, J. I. (2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24(6), 466-480. [24] Joshi S., Li Y., Kalwani R. M., & Gold J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234. [25] Karatekin C., Bingham C., & White T. (2009). Regulation of cognitive resources during an n-back task in youth-onset psychosis and attention-deficit/hyperactivity disorder (ADHD). International Journal of Psychophysiology, 73(3), 294-307. [26] Katidioti I., Borst J. P., & Taatgen N. A. (2014). What happens when we switch tasks: Pupil dilation in multitasking. Journal of Experimental Psychology: Applied, 20(4), 380-396. [27] Krejtz K., Duchowski A. T., Niedzielska A., Biele C., & Krejtz I. (2018). Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. PLoS ONE, 13(9), Article e0203629. [28] Laeng B., Ørbo M., Holmlund T., & Miozzo M. (2011). Pupillary Stroop effects. Cognitive Processing, 12(1), 13-21. [29] Maier M. E., Ernst B., & Steinhauser M. (2019). Error-related pupil dilation is sensitive to the evaluation of different error types. Biological Psychology, 141, 25-34. [30] Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1), Article 16. [31] Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. [32] Mückschel M., Chmielewski W., Ziemssen T., & Beste C. (2017). The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses. NeuroImage, 149, 44-52. [33] Muller T. H., Mars R. B., Behrens T. E., & O'Reilly J. X. (2019). Control of entropy in neural models of environmental state. eLife, 8, Article e39404. [34] Pajkossy P., Szőllősi Á., Demeter G., & Racsmány M. (2017). Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: Evidence from pupillometry and gaze pattern analysis. Psychophysiology, 54(12), 1839-1854. [35] Pajkossy P., Szőllősi Á., Demeter G., & Racsmány M. (2018). Physiological measures of dopaminergic and noradrenergic activity during attentional set shifting and reversal. Frontiers in Psychology, 9, Article 506. [36] Peinkhofer C., Knudsen G. M., Moretti R., & Kondziella D. (2019). Cortical modulation of pupillary function: Systematic review. PeerJ, 7, Article e6882. [37] Peysakhovich V., Vachon F., & Dehais F. (2017). The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load. International Journal of Psychophysiology, 112, 40-45. [38] Rondeel E. W. M., van Steenbergen H., Holland R. W., & van Knippenberg A. (2015). A closer look at cognitive control: Differences in resource allocation during updating, inhibition and switching as revealed by pupillometry. Frontiers in Human Neuroscience, 9, Article 494. [39] Schriver B. J., Perkins S. M., Sajda P., & Wang Q. (2020). Interplay between components of pupil-linked phasic arousal and its role in driving behavioral choice in Go/No-Go perceptual decision-making. Psychophysiology, 57(8), Article e13565. [40] Tsukahara, J. S., & Engle, R. W. (2021). Is baseline pupil size related to cognitive ability? Yes (under proper lighting conditions). Cognition, 211, Article 104643. [41] Tsukahara J. S., Harrison T. L., & Engle R. W. (2016). The relationship between baseline pupil size and intelligence. Cognitive Psychology, 91, 109-123. [42] Unsworth, N., & Robison, M. K. (2017a). A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychonomic Bulletin and Review, 24(4), 1282-1311. [43] Unsworth, N., & Robison, M. K. (2017b). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(12), 1962-1987. [44] Unsworth, N., & Robison, M. K. (2018). Tracking working memory maintenance with pupillometry. Attention, Perception, and Psychophysics, 80(2), 461-484. [45] Unsworth N., Miller A. L., & Robison M. K. (2021a). Is working memory capacity related to baseline pupil diameter? Psychonomic Bulletin and Review, 28(1), 228-237. [46] Unsworth N., Miller A. L., & Robison M. K. (2021b). No consistent correlation between baseline pupil diameter and cognitive abilities after controlling for confounds-A comment on Tsukahara and Engle (2021). Cognition, 215, Article 104825. [47] Unsworth N., Robison M. K., & Miller A. L. (2019). Individual differences in baseline oculometrics: Examining variation in baseline pupil diameter, spontaneous eye blink rate, and fixation stability. Cognitive, Affective, and Behavioral Neuroscience, 19(4), 1074-1093. [48] van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin and Review, 25(6), 2005-2015. [49] van Rij J., Hendriks P., van Rijn H., Baayen R. H., & Wood S. N. (2019). Analyzing the time course of pupillometric data. Trends in Hearing, 23, Article 2331216519832483. [50] van Steenbergen, H., & Band, G. P. H. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, Article 215. [51] Varazzani C., San-Galli A., Gilardeau S., & Bouret S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. The Journal of Neuroscience, 35(20), 7866-7877. [52] Wang C. A., Brien D. C., & Munoz D. P. (2015). Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. European Journal of Neuroscience, 41(8), 1102-1110. [53] Wang, C. A., & Munoz, D. P. (2021). Coordination of pupil and saccade responses by the superior colliculus. Journal of Cognitive Neuroscience, 33(5), 919-932. [54] Wolff N., Mückschel M., Ziemssen T., & Beste C. (2018). The role of phasic norepinephrine modulations during task switching: Evidence for specific effects in parietal areas. Brain Structure and Function, 223(2), 925-940. [55] Yanaoka K., van't Wout F., Saito S., & Jarrold C. (2022). Prior task experience increases 5-year-old children's use of proactive control: Behavioral and pupillometric evidence. Developmental Science, 25(5), Article e13181. [56] Yu S. J., Ghin F., Mückschel M., Ziemssen T., Stock A. K., & Beste C. (2022). A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Neuropsychologia, 166, Article 108143. [57] Zekveld A. A., van Scheepen, J. A. M., Versfeld N. J., Kramer S. E., & van Steenbergen H. (2020). The influence of hearing loss on cognitive control in an auditory conflict task: Behavioral and pupillometry findings. Journal of Speech, Language, and Hearing Research, 63(7), 2483-2492. |