心理科学 ›› 2024, Vol. 47 ›› Issue (3): 514-521.DOI: 10.16719/j.cnki.1671-6981.20240301
• 基础、实验与工效 • 下一篇
周文斌1, 南文雅**1, 伏云发**2
出版日期:
2024-05-20
发布日期:
2024-05-15
通讯作者:
**南文雅,E-mail:wynan@shnu.edu.cn;伏云发,E-mail:fyf@ynu.edu.cn
基金资助:
Zhou Wenbin1, Nan Wenya1, Fu Yunfa2
Online:
2024-05-20
Published:
2024-05-15
摘要: 工作记忆在许多复杂的认知活动中起着重要的作用,如何提高个体的工作记忆能力一直是研究的热点问题。脑电神经反馈利用操作性条件反射原理,将大脑活动实时反馈给个体,使得个体学会自主调节大脑活动,从而改善其认知和行为表现,已被广泛用于提高临床群体和健康群体的工作记忆。然而,由于现有研究在实验设计、训练方案、被试人群、样本量等方面并不相同,结论也并不完全一致,仍然缺少系统的总结和展望。文章重点评述不同的脑电神经反馈方案对工作记忆的作用结果,并指出现存的问题和可能的解决思路,以期为未来研究提供参考。
周文斌, 南文雅, 伏云发. 脑电神经反馈用于提高工作记忆的研究进展*[J]. 心理科学, 2024, 47(3): 514-521.
Zhou Wenbin, Nan Wenya, Fu Yunfa. EEG Neurofeedback for Working Memory Enhancement: A Literature Review[J]. Journal of Psychological Science, 2024, 47(3): 514-521.
[1] Agnoli S., Zanon M., Mastria S., Avenanti A., & Corazza G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia, 118, 99-106. [2] Anna Weber L., Ethofer T., & Ehlis A. C. (2020). Predictors of neurofeedback training outcome: A systematic review. NeuroImage: Clinical, 27, Article 102301. [3] Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29. [4] Brandmeyer, T., & Delorme, A. (2020). Closed-loop frontal midlineθ neurofeedback: A novel approach for training focused-attention meditation. Frontiers in Human Neuroscience, 14, Article 246. [5] Brzezicka A., Kamiński J., Reed C. M., Chung J. M., Mamelak A. N., & Rutishauser U. (2019). Working memory load-related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. Journal of Cognitive Neuroscience, 31(9), 1290-1307. [6] Campos da Paz, V. K., Garcia A., Campos da Paz Neto, A., & Tomaz C. (2018). SMR neurofeedback training facilitates working memory performance in healthy older adults: A behavioral and EEG study. Frontiers in Behavioral Neuroscience, 12, Article 321. [7] Carrick F. R., Pagnacco G., Hankir A., Abdulrahman M., Zaman R., Kalambaheti E. R., & Oggero E. (2018). The treatment of autism spectrum disorder with auditory neurofeedback: A randomized placebo controlled trial using the mente autism device. Frontiers in Neurology, 9, Article 537. [8] Dobrakowski, P., & Łebecka, G. (2020). Individualized neurofeedback training may help achieve long-term improvement of working memory in children with ADHD. Clinical EEG and Neuroscience, 51(2), 94-101. [9] Domingos C., Peralta M., Prazeres P., Nan W. Y., Rosa A., & Pereira J. G. (2021). Session frequency matters in neurofeedback training of athletes. Applied Psychophysiology and Biofeedback, 46(2), 195-204. [10] Enriquez-Geppert S., Huster R. J., Scharfenort R., Mokom Z. N., Vosskuhl J., Figge C., & Herrmann C. S. (2013). The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success. Frontiers in Human Neuroscience, 7, Article 453. [11] Escolano C., Aguilar M., & Minguez J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. 2011 annual international conference of the IEEE engineering in medicine and biology society , Boston, MA, USA. [12] Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., De Ridder D., & Minguez J. (2014). A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in Behavioral Neuroscience, 8, Article 296. [13] Escolano C., Olivan B., Lopez-del-Hoyo Y., Garcia-Campayo J., & Minguez J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. 2012 annual international conference of the IEEE engineering in medicine and biology society, San Diego, CA, USA. [14] Finnigan, S., & Robertson, I. H. (2011). Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology, 48(8), 1083-1087. [15] Gordon S., Todder D., Deutsch I., Garbi D., Alkobi O., Shriki O., & Meiran N. (2020). Effects of neurofeedback and working memory-combined training on executive functions in healthy young adults. Psychological Research, 84(6), 1586-1609. [16] Hanslmayr S., Sauseng P., Doppelmayr M., Schabus M., & Klimesch W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1-10. [17] Hanslmayr S., Staudigl T., & Fellner M. C. (2012). Oscillatory power decreases and long-term memory: The information via desynchronization hypothesis. Frontiers in Human Neuroscience, 6, Article 74. [18] Haugg A., Renz F. M., Nicholson A. A., Lor C., Götzendorfer S. J., Sladky R., & Steyrl D. (2021). Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis. NeuroImage, 237, Article 118207. [19] Hsueh J. J., Chen T. S., Chen J. J., & Shaw F. Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Human Brain Mapping, 37(7), 2662-2675. [20] Jensen O., Kaiser J., & Lachaux J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324. [21] Kadosh, K. C., & Staunton, G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 185, 545-555. [22] Kattner, F. (2021). Transfer of working memory training to the inhibitory control of auditory distraction. Psychological Research, 85(8), 3152-3166. [23] Klimesch W., Sauseng P., & Hanslmayr S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88. [24] Kober S. E., Schweiger D., Reichert J. L., Neuper C., & Wood G. (2017). Upper alpha based neurofeedback training in chronic stroke: Brain plasticity processes and cognitive effects. Applied Psychophysiology and Biofeedback, 42(1), 69-83. [25] Kober S. E., Witte M., Neuper C., & Wood G. (2017). Specific or nonspecific? Evaluation of band, baseline, and cognitive specificity of sensorimotor rhythm- and gamma-based neurofeedback. International Journal of Psychophysiology, 120, 1-13. [26] Kober S. E., Witte M., Stangl M., Väljamäe A., Neuper C., & Wood G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126(1), 82-95. [27] Kohl S. H., Mehler D. M. A., Lührs M., Thibault R. T., Konrad K., & Sorger B. (2020). The potential of functional near-infrared spectroscopy-based neurofeedback-a systematic review and recommendations for best practice. Frontiers in Neuroscience, 14, Article 594. [28] Lavy Y., Dwolatzky T., Kaplan Z., Guez J., & Todder D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Applied Psychophysiology and Biofeedback, 44(1), 41-49. [29] Lecomte, G., & Juhel, J. (2011). The effects of neurofeedback training on memory performance in elderly subjects. Psychology, 2(8), 846-852. [30] Morales-Quezada L., Martinez D., El-Hagrassy M. M., Kaptchuk T. J., Sterman M. B., & Yeh G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy and Behavior, 101, Article 106570. [31] Nan W. Y., Rodrigues J. P., Ma J. L., Qu X. T., Wan F., Mak P. I., & Rosa A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83-87. [32] Nan W. Y., Wan F., Chang L. S., Pun S. H., Vai M. I., & Rosa A. (2017). An exploratory study of intensive neurofeedback training for schizophrenia. Behavioural Neurology, 2017, Article 6914216. [33] Nan W. Y., Wan F., Tang Q., Wong C. M., Wang B. Y., & Rosa A. (2018). Eyes-closed resting EEG predicts the learning of alpha down-regulation in neurofeedback training. Frontiers in Psychology, 9, Article 1607. [34] Ninaus M., Kober S. E., Witte M., Koschutnig K., Neuper C., & Wood G. (2015). Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biological Psychology, 110, 126-133. [35] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. [36] Pavlov, Y. G., & Kotchoubey, B. (2022). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, 59, Article e13735. [37] Pei G. Y., Wu J. L., Chen D. D., Guo G. X., Liu S. Z., Hong M. X., & Yan T. Y. (2018). Effects of an integrated neurofeedback system with dry electrodes: EEG acquisition and cognition assessment. Sensors, 18(10), Article 3396. [38] Reichert J. L., Kober S. E., Neuper C., & Wood G. (2015). Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm. Clinical Neurophysiology, 126(11), 2068-2077. [39] Reis J., Portugal A. M., Fernandes L., Afonso N., Pereira M., Sousa N., & Dias N. S. (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in Aging Neuroscience, 8, Article 157. [40] Ros T., Enriquez-Geppert S., Zotev V., Young K. D., Wood G., Whitfield-Gabrieli S., & Thibault R. T. (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 143(6), 1674-1685. [41] Ros T., Kwiek J., Andriot T., Michela A., Vuilleumier P., Garibotto V., & Ginovart N. (2021). PET imaging of dopamine neurotransmission during EEG neurofeedback. Frontiers in Physiology, 11, Article 590503. [42] Ros T., Théberge J., Frewen P. A., Kluetsch R., Densmore M., Calhoun V. D., & Lanius R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324-335. [43] Rozengurt R., Shtoots L., Sheriff A., Sadka O., & Levy D. A. (2017). Enhancing early consolidation of human episodic memory by theta EEG neurofeedback. Neurobiology of Learning and Memory, 145, 165-171. [44] Singh F., Shu I. W., Hsu S. H., Link P., Pineda J. A., & Granholm E. (2020). Modulation of frontal gamma oscillations improves working memory in schizophrenia. NeuroImage: Clinical, 27, Article 102339. [45] Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., & Sulzer J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86-100. [46] Staufenbiel S. M., Brouwer A. M., Keizer A. W., & van Wouwe, N. C. (2014). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biological Psychology, 95, 74-85. [47] van Doren J., Arns M., Heinrich H., Vollebregt M. A., Strehl U., & Loo S. K. (2019). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. European Child and Adolescent Psychiatry, 28(3), 293-305. [48] Vernon D., Egner T., Cooper N., Compton T., Neilands C., Sheri A., & Gruzelier J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75-85. [49] Wan F., Nan W. Y., Vai M. I., & Rosa A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Frontiers in Human Neuroscience, 8, Article 500. [50] Wang, B. Y., & Pineau, J. (2016). Online bagging and boosting for imbalanced data streams. IEEE Transactions on Knowledge and Data Engineering, 28(12), 3353-3366. [51] Wang, J. R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406-2420. [52] Wang S. Y., Lin I. M., Fan S. Y., Tsai Y. C., Yen C. F., Yeh Y. C., & Lin H. C. (2019). The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. Journal of Affective Disorders, 257, 287-296. [53] Wei T. Y., Chang D. W., Liu Y. D., Liu C. W., Young C. P., Liang S. F., & Shaw F. Z. (2017). Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomedical Engineering OnLine, 16(1), Article 128. [54] Winterling S. L., Shields S. M., & Rose M. (2019). Reduced memory-related ongoing oscillatory activity in healthy older adults. Neurobiology of Aging, 79, 1-10. [55] Witte M., Kober S. E., Ninaus M., Neuper C., & Wood G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience, 7, Article 478. [56] Wong C. M., Wang Z., Wang B. Y., Lao K. F., Rosa A., Xu P., & Wan F. (2020). Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2123-2135. [57] Xiang M. Q., Hou X. H., Liao B. G., Liao J. W., & Hu M. (2018). The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychology of Sport and Exercise, 36, 114-122. [58] Xiong S., Cheng C., Wu X., Guo X. J., Yao L., & Zhang J. C. (2014). Working memory training using EEG neurofeedback in normal young adults. Bio-Medical Materials and Engineering, 24(6), 3637-3644. [59] Yeh W. H., Hsueh J. J., & Shaw F. Z. (2021). Neurofeedback of alpha activity on memory in healthy participants: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 14, Article 562360. [60] Zoefel B., Huster R. J., & Herrmann C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427-1431. |
[1] | 李莹, 李琳, 潘家冰, 卢笑笑, 王悦. 执行控制训练对不同工作记忆刷新能力汉英双语者语言控制的影响*[J]. 心理科学, 2024, 47(5): 1088-1095. |
[2] | 谢伟烨, 刘宇澄, 蔡李雪, 韩林株, 刘志雅. 表面相似性与呈现方式对关系类比推理的影响:匹配物效应*[J]. 心理科学, 2024, 47(4): 770-779. |
[3] | 袁一宸, 严晗, 何翔, 岳珍珠. 视听多通道刺激的注意捕获:工作记忆负载的影响*[J]. 心理科学, 2024, 47(4): 795-802. |
[4] | 史新广, 李箫, 冯成志. 不同神经类型大学生工作记忆的特点及神经机制*[J]. 心理科学, 2024, 47(1): 36-43. |
[5] | 杨婷, 赵鑫, 贺相春, 李恺岳, 曹纹靖. 策略的使用对工作记忆训练迁移效应的影响*[J]. 心理科学, 2023, 46(4): 841-847. |
[6] | 孔繁昌, 夏宇娟, 刘诏君, 王美茹, 李晓瑶. 媒体多任务行为影响认知控制:注意分散假说的证据*[J]. 心理科学, 2023, 46(4): 865-872. |
[7] | 赵广平 吴亚楠 石雷 陈顺森. 环性传递结构的启动优势及脑电证据[J]. 心理科学, 2023, 46(3): 685-692. |
[8] | 彭雨笛 谢恬 马宁. 日间节律对个体认知行为的影响[J]. 心理科学, 2023, 46(2): 282-290. |
[9] | 杜肖丽 Cody Ding 徐梦思 袁树歌 张利杰 陈红 . 社会排斥对视觉工作记忆容量的影响[J]. 心理科学, 2023, 46(1): 11-18. |
[10] | 赵鑫 杨婷 王天翼 孙洁. 任务结构相似性对工作记忆训练迁移效应的影响[J]. 心理科学, 2022, 45(6): 1337-1343. |
[11] | 朱荣娟 游旭群. 听觉警报失聪的认知因素[J]. 心理科学, 2022, 45(5): 1045-1052. |
[12] | 王海霞 雷怡 郑文瑜 李红 王超. rtfMRI-NF技术在抑郁症干预中的应用[J]. 心理科学, 2022, 45(2): 498-505. |
[13] | 王家慰 邢强. 注意和工作记忆对交错呈现优势的影响[J]. 心理科学, 2022, 45(1): 24-32. |
[14] | 陈瀛 吴瑕 汪新建. 认知控制子成分与客观风险对信任行为的影响[J]. 心理科学, 2022, 45(1): 187-194. |
[15] | 胡博 李开容 陈雨嘉 刘博 常明. 时间压力下图标语义距离对雷达界面信息工作记忆的影响[J]. 心理科学, 2021, 44(5): 1073-1080. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||