[1] 蔡艳, 涂冬波. (2015). 属性多级化的认知诊断模型拓展及其Q矩阵设计. 心理学报, 47(10), 1300-1308. [2] 昌维, 詹沛达, 王立君. (2018). 认知诊断中多分属性与二分属性的对比研究. 心理科学, 41(4), 982-988. [3] 丁树良, 罗芬, 汪文义, 熊建华. (2015). 0-1和多值可达矩阵的性质及应用. 江西师范大学学报(自然科学版), 39(1), 64-68. [4] 丁树良, 汪文义, 罗芬, 熊建华. (2015). 多值Q矩阵理论. 江西师范大学学报(自然科学版), 39(4), 365-370. [5] 康春花, 李元白, 曾平飞, 焦丽亚. (2018). 4种多级计分非参数认知诊断方法的比较. 中国考试, 6, 56-62. [6] 康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法: 多级评分的聚类分析. 心理学报, 47(8), 1077-1088. [7] 康春花, 杨亚坤, 曾平飞. (2017). 海明距离判别法分类准确率的影响因素. 江西师范大学学报(自然科学版), 41(4), 394-400. [8] 康春花, 杨亚坤, 曾平飞. (2019). 一种混合计分的非参数认知诊断方法: 曼哈顿距离判别法. 心理科学, 42(2), 455-462. [9] 李令青, 韩笑, 辛涛, 刘彦楼. (2019). 认知诊断评价在个性化学习中的功能与价值. 中国考试, 1, 40-44. [10] 罗照盛, 李喻骏, 喻晓锋, 高椿雷, 彭亚风. (2015). 一种基于Q矩阵理论朴素的认知诊断方法. 心理学报, 47(2), 264-272. [11] 唐宇政. (2019). 基于欧式距离的判别分析——鸢尾花分类问题探究. 现代商贸工业, 9, 183-185. [12] 汪大勋, 高旭亮, 韩雨婷, 涂冬波. (2018). 一种简单有效的Q矩阵估计方法开发: 基于非参数化方法视角. 心理科学, 41(1), 180-188. [13] 王立君, 唐芳, 詹沛达. (2020). 基于认知诊断测评的个性化补救教学效果分析: 以“一元一次方程”为例. 心理科学, 43(6), 1490-1497. [14] 王立君, 赵少勇, 昌维, 唐芳, 詹沛达. (2022). 重参数化多分属性DINA模型的多级评分拓广——基于等级反应模型. 心理科学, 45(1), 195-203. [15] 汪文义, 丁树良, 宋丽红. (2015). 认知诊断中基于条件期望的距离判别方法. 心理学报, 47(12), 1449-1510. [16] 汪文义, 丁树良, 宋丽红, 邝铮, 曹慧媛. (2016). 神经网络和支持向量机在认知诊断中的应用. 心理科学, 39(4), 777-782. [17] 詹沛达, 边玉芳. (2015). 概率性输入, 噪音“与”门(PINA)模型. 心理科学, 38(5), 1230-1238. [18] 詹沛达, 边玉芳, 王立君. (2016). 重参数化的多分属性诊断分类模型及其判准率影响因素. 心理学报, 48(3), 318-330. [19] 詹沛达, 丁树良, 王立君. (2017). 多分属性层级结构下引入逻辑约束的理想掌握模式. 江西师范大学学报(自然科学版), 41(3), 289-295. [20] 詹沛达, 潘艳芳, 李菲茗. (2021). 面向“为学习而测评”的纵向认知诊断模型. 心理科学, 44(1), 214-222. [21] 詹沛达, 王立君. (2017). 认知诊断评估对实现有效教学的促进作用——以三维目标为视角. 赣南师范大学学报, 38(1), 109-115. [22] Cha S. H., Yoon S., & Tappert C. C. (2006). Enhancing binary feature vector similarity measures. Journal of Pattern Recognition Research, 1(1), 63-77. [23] Chen, J. S., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419-437. [24] Chiu, C. Y., & Chang, Y. P. (2021). Advances in CD-CAT: The general nonparametric item selection method. Psychometrika, 86(4), 1039-1057. [25] Chiu, C. Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30(2), 225-250. [26] Chiu C. Y., Douglas J. A., & Li X. D. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633-665. [27] Chiu, C. Y., & Köhn, H. F. (2015). A general proof of consistency of heuristic classification for cognitive diagnosis models. British Journal of Mathematical and Statistical Psychology, 68(3), 387-409. [28] Chiu, C. Y., & Köhn, H. F. (2016). Consistency of cluster analysis for cognitive diagnosis: The reduced reparameterized unified model and the general diagnostic model. Psychometrika, 81(3), 585-610. [29] Choi S. S., Cha S. H., & Tappert C. C. (2010). A survey of binary similarity and distance measures. Journal of Systemics, 8(1), 43-48. [30] de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. [31] Gu, Y. Q., & Xu, G. J. (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2), 468-483. [32] Guo L., Yang J., & Song N. Q. (2020). Spectral clustering algorithm for cognitive diagnostic assessment. Frontiers in Psychology, 11, Article 944. [33] Jones L. R., Wheeler G., & Centurino, V. A. S. (2015). TIMSS 2015 science framework (pp. 29-58). TIMSS. [34] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. [35] Karelitz, T. M. (2004). Ordered category attribute coding framework for cognitive assessments (Unpublished doctorial dissertation). University of Illinois at Urbana-Champaign. [36] Ma, W. C. (2021). A higher-order cognitive diagnosis model with ordinal attributes for dichotomous response data. Multivariate Behavioral Research. [37] Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., & SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261-272. [38] Wang, S. Y., & Chen, Y. H. (2020). Using response times and response accuracy to measure fluency within cognitive diagnosis models. Psychometrika, 85(3), 600-629. [39] Zhan, P. D. (2020). A Markov estimation strategy for longitudinal learning diagnosis: Providing timely diagnostic feedback. Educational and Psychological Measurement, 80(6), 1145-1167. [40] Zhan P. D., Jiao H., Liao M. Q., & Bian Y. F. (2019). Bayesian DINA modeling incorporating within-item characteristic dependency. Applied Psychological Measurement, 43(2), 143-158. [41] Zhan P. D., Wang W. C., Jiao H., & Bian Y. F. (2020). Probabilistic-input, noisy conjunctive models for cognitive diagnosis. Frontiers in Psychology, 9, Article 997. [42] Zhan P. D., Wang W C., & Li X. M. (2020). A partial mastery, higher-order latent structural model for polytomous attributes in cognitive diagnostic assessments. Journal of Classification, 37(2), 328-351. |