[1] 陈平, 李珍, 辛涛. (2011). 认知诊断计算机化自适应测验的题库使用均匀性初探. 心理与行为研究, 9(2), 125-132, 153. [2] 高椿雷, 罗照盛, 郑蝉金, 喻晓锋, 彭亚风, 郭小军. (2017). CD-CAT初始阶段项目选取方法. 心理科学, 40(2), 485-491. [3] 郭磊, 郑蝉金, 边玉芳, 宋乃庆, 夏凌翔. (2016). 认知诊断计算机化自适应测验中新的选题策略: 结合项目区分度指标. 心理学报, 48(7), 903-914. [4] 郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法. 心理学报, 53(9), 1032-1043. [5] 李佳, 丁树良, 况天昊. (2021). 区分度与测验进程相匹配的CAT选题策略. 江西师范大学学报(自然科学版), 45(4), 384-389. [6] 李瑜. (2014). 多选题认知诊断测验编制及多策略的多选题认知诊断模型的开发 (博士学位论文). 江西师范大学,南昌. [7] 刘拓, 张佳慧, 辛涛. (2015). 多项选择题中干扰项信息的利用. 心理学探新, 35(3), 261-265. [8] 罗照盛, 杭丹丹, 秦春影, 喻晓锋. (2020). 可以处理补偿作用的认知诊断模型: CDINA模型. 江西师范大学学报(自然科学版), 44(5), 441-453. [9] 罗照盛, 喻晓锋, 高椿雷, 李喻骏, 彭亚风, 王睿, 王钰彤. (2015). 基于属性掌握概率的认知诊断计算机化自适应测验选题策略. 心理学报, 47(5), 679-688. [10] 涂冬波, 蔡艳, 戴海琦. (2013). 认知诊断CAT选题策略及初始题选取方法. 心理科学, 36(2), 469-474. [11] 涂冬波, 郑蝉金, 戴步云, 汪文义. (2017). 计算机化自适应测验: 理论与方法. 北京师范大学出版社. [12] 王晓庆, 罗芬, 丁树良, 熊建华. (2016). 多级评分计算机化自适应测验动态调和平均选题策略. 心理学探新, 36(3), 270-275. [13] 夏梦连, 毛秀珍, 杨睿. (2018). 属性多级和项目多级评分的认知诊断模型. 江西师范大学学报(自然科学版), 42(2), 134-138. [14] Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37(1), 29-51. [15] Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632. [16] de la Torre, J. (2009). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163-183. [17] Gao X. L., Ma W. C., Wang D. X., Cai Y., & Tu D. B. (2021). A class of cognitive diagnosis models for polytomous data. Journal of Educational and Behavioral Statistics, 46(3), 297-322. [18] Gao X. L., Wang D. X., Cai Y., & Tu D. B. (2020). Cognitive diagnostic computerized adaptive testing for polytomously scored items. Journal of Classification, 37(3), 709-729. [19] Guo, L., & Zheng, C. J. (2019). Termination rules for variable-length CD-CAT from the information theory perspective. Frontiers in Psychology, 10, Article 1122. [20] Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262-277. [21] Henson R., Roussos L., Douglas J., & He X. M. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32(4), 275-288. [22] Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407-419. [23] Kaplan M., de la Torre J., & Barrada J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188. [24] Leighton J. P.,& Gierl, M. J. (2007). Cognitive diagnostic assessment for education: Theory and applications Cambridge University Press Theory and applications. Cambridge University Press. [25] Ma, W. C. (2021). A higher-order cognitive diagnosis model with ordinal attributes for dichotomous response data. Multivariate Behavioral Research. Advance online publication. [26] Ma, W. C, & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. [27] Mellenbergh, G. J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement, 19(1), 91-100. [28] Templin J., Henson R., Rupp A., Jang E., & Ahmed M.(2008). Cognitive diagnosis models for nominal response data. Paper presented at the annual meeting of the National Council on Measurement in Education, New York. [29] von Davier, M., & Lee, Y.-S. (2019). Handbook of diagnostic classification models. Springer. [30] Wang, C. (2013). Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length. Educational and Psychological Measurement, 73(6), 1017-1035. [31] Wang S. Y., Fellouris G., & Chang H.-H. (2017). Computerized adaptive testing that allows for response revision: Design and asymptotic theory. Statistica Sinica, 27(4), 1987-2010. [32] Wang S. Y., Fellouris G., & Chang H. H. (2019). Statistical foundations for computerized adaptive testing with response revision. Psychometrika, 84(2), 375-394. [33] Yigit H. D., Sorrel M. A., & de la Torre, J. (2019). Computerized adaptive testing for cognitively based multiple-choice data. Applied Psychological Measurement, 43(5), 388-401. [34] Yu X. F., Cheng Y., & Chang H.-H. (2019). Recent developments in cognitive diagnostic computerized adaptive testing (CD-CAT): A comprehensive review. In M. von Davier, & Y. S. Lee (Eds.), Handbook of diagnostic classification models (pp. 307-331). Springer. [35] Zheng, C. J., & Chang, H. H. (2016). High-efficiency response distribution-based item selection algorithms for short-length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624. [36] Zheng, C. J., & Wang, C. (2017). Application of binary searching for item exposure control in cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 41(7), 561-576. |