[1] 蔡艳, 谭辉晔, 涂冬波. (2015). 哪个测验Q矩阵更合理: 基于DINA模型测验Q矩阵合理性侦查指标及其比较与应用. 心理科学, 38(5), 1239-1247. [2] 李令青, 韩笑, 辛涛, 刘彦楼. (2019). 认知诊断评价在个性化学习中的功能与价值. 中国考试, 1, 40-44. [3] 刘彦楼, 辛涛, 李令青, 田伟, 刘笑笑. (2016). 改进的认知诊断模型项目功能差异检验方法——基于观察信息矩阵的Wald统计量. 心理学报, 48(5), 588-598. [4] 刘彦楼, 辛涛, 田伟. (2017). 项目反应理论与认知诊断模型的参数估计: 模型整合视角. 北京师范大学学报(自然科学版), 53(6), 742-748. [5] 涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568. [6] 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正: 相对拟合统计量. 心理学报, 52(1), 93-106. [7] 汪文义, 宋丽红, 陈平, 丁树良, 程艳. (2016). 认知诊断测验的属性分类一致性和分类准确性指标. 心理学探新, 36(3), 264-269. [8] 王晓庆, 丁树良, 罗芬. (2019). 认知诊断中的Q矩阵及其作用. 心理科学, 42(3), 739-746. [9] Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). Addison-Wesley. [10] Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6(4), 431-444. [11] Chen Y. X., Liu J. C., Xu G. J., & Ying Z. L. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866. [12] de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. [13] de la Torre, J., & Chiu, C. Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273. [14] de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353. [15] Feng Y. L., Habing B. T., & Huebner A. (2014). Parameter estimation of the reduced RUM using the EM algorithm. Applied Psychological Measurement, 38(2), 137-150. [16] Henson R. A., Templin J. L., & Willse J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210. [17] Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407-419. [18] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. [19] Khorramdel L., Shin H. J., & von Davier M. (2019). GDM software mdltm including parallel EM algorithm. In M. von Davier & Y. S. Lee (Eds.), Handbook of diagnostic classification models (pp. 603-628). Springer. [20] Kunina-Habenicht O., Rupp A. A., & Wilhelm O. (2012). The impact of model misspecification on parameter estimation and item-fit assessment in log-linear diagnostic classification models. Journal of Educational Measurement, 49(1), 59-81. [21] Liu, R. (2018). Misspecification of attribute structure in diagnostic measurement. Educational and Psychological Measurement, 78(4), 605-634. [22] Liu Y. L., Andersson B., Xin T., Zhang H. Y., & Wang L. L. (2019). Improved Wald statistics for item-level model comparison in diagnostic classification models. Applied Psychological Measurement, 43(5), 402-414. [23] Liu Y. L., Tian W., & Xin T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3-26. [24] Liu Y. L., Xin T., Andersson B., & Tian W. (2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72(1), 18-37. [25] Liu Y. L., Xin T., & Jiang Y. (2021). Structural parameter standard error estimation method in diagnostic classification models: Estimation and application. Multivariate Behavioral Research. Advance online publication. [26] Liu Y. L., Yin H., Xin T., Shao L. C., & Yuan L. (2019). A comparison of differential item functioning detection methods in cognitive diagnostic models. Frontiers in Psychology, 10, Article 1137. [27] Ma, W. C., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1-26. [28] Robitzsch A., Kiefer T., George A. C., & Uenlue A. (2020). CDM: Cognitive diagnosis modeling. https://CRAN.R-project.org/package=CDM [29] Rupp, A. A., & Templin, J. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96. [30] Rupp A. A., Templin J., & Henson R. A. (2010). Diagnostic measurement: Theory, methods, and applications. Guilford. [31] Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34(1), 1-97. [32] Tatsuoka, K. K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring of skills and knowledge acquisition (pp. 453-488). Erlbaum. [33] Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. [34] Wang, S. Y. (2018). Two-stage maximum likelihood estimation in the misspecified restricted latent class model. British Journal of Mathematical and Statistical Psychology, 71(2), 300-333. [35] Wang W. Y., Song L. H., Chen P., Meng Y. R., & Ding S. L. (2015). Attribute-level and pattern-level classi-cation consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52(4), 457-476. |