[1] 李星云. (2016). 论小学数学核心素养的构建——基于PISA2012的视角. 课程·教材·教法, 36(5), 72-78. [2] 史滋福, 廖紫祥, 刘妹. (2015). 基础比率和认知风格对贝叶斯推理影响的眼动研究. 心理科学, 38(5), 1045-1050. [3] 唐佳丽, 李勇. (2022). “统计与概率”在小学数学教材中的编排分析. 数学教育学报, 31(1), 59-63. [4] 夏小刚, 吕传汉. (2006). 跨文化视野下中美学生数学思维差异的比较. 比较教育研究, 27(8), 63-67. [5] 谢云天, 史滋福. (2021). 贝叶斯推理的三重加工心智模型. 心理学探新, 41(3), 230-236. [6] 章勤琼, 徐文彬. (2016). 论小学数学中分数的多层级理解及其教学. 课程·教材·教法, 36(3), 43-49. [7] Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30(3), 241-254. [8] Barroso C., Ganley C. M., McGraw A. L., Geer E. A., Hart S. A., & Daucourt M. C. (2021). A meta-analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147(2), 134-168. [9] Binder K., Krauss S., Schmidmaier R., & Braun L. T. (2021). Natural frequency trees improve diagnostic efficiency in Bayesian reasoning. Advances in Health Sciences Education, 26(3), 847-863. [10] Brase, G. L. (2008). Frequency interpretation of ambiguous statistical information facilitates Bayesian reasoning. Psychonomic Bulletin and Review, 15(2), 284-289. [11] Brase, G. L. (2021a). What facilitates Bayesian reasoning? A crucial test of ecological rationality versus nested sets hypotheses. Psychonomic Bulletin and Review, 28(2), 703-709. [12] Brase, G. L. (2021b). Which cognitive individual differences predict good Bayesian reasoning? Concurrent comparisons of underlying abilities. Memory and Cognition, 49(2), 235-248. [13] Chapman, G. B., & Liu, J. J. (2009). Numeracy, frequency, and Bayesian reasoning. Judgment and Decision Making, 4(1), 34-40. [14] Ferris D. L., Reb J., Lian H. W., Sim S., & Ang D. (2018). What goes up must keep going up? Cultural differences in cognitive styles influence evaluations of dynamic performance. Journal of Applied Psychology, 103(3), 347-358. [15] Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684-704. [16] Gigerenzer G., Multmeier J., Föhring A., & Wegwarth O. (2021). Do children have Bayesian intuitions? Journal of Experimental Psychology: General, 150(6), 1041-1070. [17] Girotto, V., & Gonzalez, M. (2001). Solving probabilistic and statistical problems: A matter of information structure and question form. Cognition, 78(3), 247-276. [18] Girotto, V., & Gonzalez, M. (2008). Children’s understanding of posterior probability. Cognition, 106(1), 325-344. [19] Hoffrage U., Hafenbrädl S., & Bouquet C. (2015). Natural frequencies facilitate diagnostic inferences of managers. Frontiers in Psychology, 6, 642. [20] Johnson, E. D., & Tubau, E. (2015). Comprehension and computation in Bayesian problem solving. Frontiers in Psychology, 6, 938. [21] Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness Cambridge University Press Towards a cognitive science of language, inference, and consciousness. Cambridge University Press. [22] McDowell, M., & Jacobs, P. (2017). Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychological Bulletin, 143(12), 1273-1312. [23] Navarrete, G., & Santamaria, C. (2011). Ecological rationality and evolution: The mind really works that way? Frontiers in Psychology, 2, 251. [24] Pighin S., Girotto V., & Tentori K. (2017). Children’s quantitative Bayesian inferences from natural frequencies and number of chances. Cognition, 168, 164-175. [25] Reani M., Davies A., Peek N., & Jay C. (2018). How do people use information presentation to make decisions in Bayesian reasoning tasks? International Journal of Human-Computer Studies, 111, 62-77. [26] Rolison J. J., Morsanyi K., & Peters E. (2020). Understanding health risk comprehension: The role of math anxiety, subjective numeracy, and objective numeracy. Medical Decision Making, 40(2), 222-234. [27] Rubinsten O., Marciano H., Levy H. E., & Cohen L. D. (2018). A framework for studying the heterogeneity of risk factors in math anxiety. Frontiers in Behavioral Neuroscience, 12, 291. [28] Sirota M., Kostovičová L., & Vallée-Tourangeau F. (2015). Now you Bayes, now you don't: Effects of set-problem and frequency-format mental representations on statistical reasoning. Psychonomic Bulletin and Review, 22(5), 1465-1473. [29] Téglás E., Vul E., Girotto V., Gonzalez M., Tenenbaum J. B., & Bonatti L. L. (2011). Pure reasoning in 12-month-old infants as probabilistic inference. Science, 332(6033), 1054-1059. [30] Varnum M., Grossmann I., Katunar D., Nisbett R. E., & Kitayama S. (2008). Holism in a European cultural context: Differences in cognitive style between central and east Europeans and westerners. Journal of Cognition and Culture, 8(3-4), 321-333. [31] Weber P., Binder K., & Krauss S. (2018). Why can only 24% solve Bayesian reasoning problems in natural frequencies: frequency phobia in spite of probability blindness. Frontiers in Psychology, 9, 1833. [32] Zhu, L. Q., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental computation. Cognition, 98(3), 287-308. |