[1] 房慧聪, 周琳. (2012). 性别、寻路策略与导航方式对寻路行为的影响. 心理学报, 44(8), 1058-1065. [2] 姬鸣. (2012). 任务优先及中断——基于“专家”飞行员的CTM失误研究 (博士学位论文). 陕西师范大学,西安. [3] 刘丽虹, 张积家, 王惠萍. (2005). 习惯的空间术语对空间认知的影响. 心理学报, 37(4), 469-475. [4] 叶浩生. (2010). 具身认知: 认知心理学的新取向. 心理科学进展, 18(5), 705-710. [5] 叶浩生. (2014). “具身”涵义的理论辨析. 心理学报, 46(7), 1032-1042. [6] 余萌, 李晶. (2021). 涉空对话中表征对齐的产生机制. 心理科学进展, 29(3), 450-459. [7] Bacim F., Ragan E., Scerbo S., Polys N. F., Setareh M., & Jones B. D. (2013). The effects of display fidelity, visual complexity, and task scope on spatial understanding of 3D graphs. In Proceedings of Graphics Interface. Sascatchewan, Regina, Canada. [8] Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36-43. [9] Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge. [10] Faul F., Erdfelder E., Lang A. -G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. [11] Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin. [12] Gopher D.,& Koriat, A. (1999). Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application The MIT Press Cognitive regulation of performance: Interaction of theory and application. The MIT Press. [13] Gorisse G., Christmann O., Amato E. A., & Richir S. (2017). First- and third-person perspectives in immersive virtual environments: Presence and performance analysis of embodied users. Frontiers in Robotics and AI, 4, Article 33. [14] Gramann K., Müller H. J., Eick E. M., & Schönebeck B. (2005). Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1199-1223. [15] Gugerty, L., & Brooks, J. (2004). Reference-frame misalignment and cardinal direction judgments: Group differences and strategies. Journal of Experimental Psychology: Applied, 10(2), 75-88. [16] Guo F., Cao Y. Q., Ding Y., Liu W. L., & Zhang X. F. (2015). A multimodal measurement method of users' emotional experiences shopping online. Human Factors and Ergonomics in Manufacturing and Service Industries, 25(5), 585-598. [17] Jennett C., Cox A. L., Cairns P., Dhoparee S., Epps A., Tijs T., & Walton A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641-661. [18] Jund T., Capobianco A., & Larue F. (2016). Impact of frame of reference on memorization in virtual environments. In 2016 IEEE 16th International Conference on Advanced Learning Technologies. Austin, TX, USA. [19] Kaber D. B., Alexander A. L., Stelzer E. M., Kim S. H., Kaufmann K., & Hsiang S. (2008). Perceived clutter in advanced cockpit displays: Measurement and modeling with experienced pilots. Aviation, Space, and Environmental Medicine, 79(11), 1007-1018. [20] Kaber D. B., Kaufmann K., Alexander A. L., Kim S.-H., Naylor J. T., Prinzel III L. J., & Gil G. H. (2013). Testing and validation of a psychophysically defined metric of display clutter. Journal of Aerospace Information Systems, 10(8), 359-368. [21] Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11-12), 765-779. [22] Liu, Y., & Lourenco, S. F. (2021). Visual perception of apparent motion abides by minimization principles of geometry. Journal of Experimental Psychology: Human Perception and Performance, 47(9), 1247-1252. [23] McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 174-191). Springer. [24] Moacdieh, N., & Sarter, N. (2015). Clutter in electronic medical records: Examining its performance and attentional costs using eye tracking. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(4), 591-606. [25] Nash E. B., Edwards G. W., Thompson J. A., & Barfield W. (2000). A review of presence and performance in virtual environments. International Journal of Human-Computer Interaction, 12(1), 1-41. [26] Norman, D. (1986). Cognitive engineering. In D. A. Norman & S. Draper (Eds.), User centered system design: New perspectives on human-computer interaction (pp. 31-61). Lawrence Erlbaum Associates. [27] Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and space (pp. 163-182). Oxford University Press. [28] Pankok C., Jr., & Kaber D. (2017). Influence of task knowledge and display features on driver attention to cluttered navigation displays. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 1768-1772. [29] Pankok C., Jr., & Kaber D. (2018). The effect of navigation display clutter on performance and attention allocation in presentation- and simulator-based driving experiments. Applied Ergonomics, 69, 136-145. [30] Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13(4), 493-508. [31] Pérez-Edgar K., MacNeill L. A., & Fu X. X. (2020). Navigating through the experienced environment: Insights from mobile eye tracking. Current Directions in Psychological Science, 29(3), 286-292. [32] Raja D., Bowman D. A., Lucas J., & North C. (2004). Exploring the benefits of immersion in abstract information visualization. In Proceedings of the 8th Immersive Projection Technology Workshop. Iowa State University, Ames, IA, USA. [33] Schneider, G. E. (1969). Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science, 163(3870), 895-902. [34] Sedgwick, H. A. (2021). JJ Gibson' s “Ground theory of space perception”. i-Perception, 12(3), 1-55. [35] Sholl M. J. (2001). The role of a self-reference system in spatial navigation. In Proceedings of International Conference on Spatial Information Theory: Foundations of Geographic Information Science. Springer, Morro Bay, CA, USA. [36] Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9-55. [37] Sinatra A. M., Pollard K. A., Oiknine A., Patton D., Ericson M., & Dalangin B. (2020). The impact of immersion level and virtual reality experience on outcomes from navigating in a virtual environment. In Proceedings of the SPIE 11426, Virtual, Augmented, and Mixed Reality (XR) Technology for Multi-Domain Operations. SPIE, Online, USA [38] Vasquez H. M., Hollands J. G., Jamieson G. A., & Agnew M. J. (2022). A mirror in the sky: The effects of map format and user expertise on navigation performance and mental workload. Ergonomics, 65(4), 604-617. [39] Vincow, M. A., & Wickens, C. D. (1998). Frame of reference and navigation through document visualizations: Flying through information space. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 42(5), 511-515. [40] Weibel R. P., Grübel J., Zhao H. T., Thrash T., Meloni D., Hölscher C., & Schinazi V. R. (2018). Virtual reality experiments with physiological measures. Journal of Visualized Experiments, 138, Article 58318. [41] Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159-177. [42] Wickens, C. D., & Long, J. (1995). Object versus space-based models of visual attention: Implications for the design of head-up displays. Journal of Experimental Psychology: Applied, 1(3), 179-193. [43] Wickens C. D., Thomas L. C., & Young R. (2000). Frames of reference for the display of battlefield information: Judgment-display dependencies. Human Factors: The Journal of the Human Factors and Ergonomics Society, 42(4), 660-675. |