Journal of Psychological Science ›› 2025, Vol. 48 ›› Issue (2): 268-279.DOI: 10.16719/j.cnki.1671-6981.20250202
• General Psychology, Experimental Psychology & Ergonomics • Previous Articles Next Articles
Wang Lihui1,2, Liu Meng1, Wang Zhenni1,2
Online:
2025-03-20
Published:
2025-04-21
王立卉**1,2, 刘梦1, 王珍妮1,2
通讯作者:
**王立卉,E-mail: lihui.wang@sjtu.edu.cn
基金资助:
Wang Lihui, Liu Meng, Wang Zhenni. Advances of Eye Movement Data Analysis in Face Processing[J]. Journal of Psychological Science, 2025, 48(2): 268-279.
王立卉, 刘梦, 王珍妮. 面孔加工中眼动数据分析方法的新进展*[J]. 心理科学, 2025, 48(2): 268-279.
[1] 崔冬, 韩晓雅, 陈贺, 韩俊霞, 李小俚, 康健楠. (2020) 基于面孔加工异常的孤独症儿童识别.科学通报, 65, 2128-2135. [2] 龚栩,黄宇霞,王妍,罗跃嘉.(2011)中国面孔表情图片系统的修订. 中国心理卫生杂志, 25, 40-46. [3] 彭聃龄. (2012). 普通心理学. 北京师范大学出版社.. [4] Arizpe J., Kravitz D. J., Yovel G., & Baker C. I. (2012). Start position strongly influences fixation patterns during face processing: Difficulties with eye movements as a measure of information use. PLoS ONE, 7, e31106. [5] Avidan, G., & Behrmann, M. (2021). Spatial integration in normal face processing and its breakdown in congenital prosopagnosia. Annual Review of Vision Science, 7, 301-321. [6] Bahill A. T., Clark M. R., & Stark L. (1975). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24(3-4), 191-204. [7] Bicanski, A. & Burgess, N. (2019). A computational model of visual recognition via grid cells. Current Biology, 29, 979-990. [8] Blais C., Jack R. E., Scheepers C., Fiset D., & Caldara R. (2008). Culture shapes how we look at faces. PLoS ONE, 7, e31106. [9] Broda M. D., Haddad T., & de Haas B. (2023). Quick, eyes! Isolated upper face regions but not artificial features elicit rapid saccades. Journal of Vision, 23(2), 5-5. [10] Castaldi E., Burr D., Turi M., & Binda P. (2020). Fast saccadic eye-movements in humans suggest that numerosity perception is automatic and direct. Proceedings. Biological Sciences, 287(1935), 20201884. [11] Chan C. Y. H., Chan A. B., Lee T. M. C., & Hsiao J. H. (2018). Eye movement patterns in face recognition are associated with cognitive decline in older adults. Psychonomic Bulletin and Review, 25, 2200-2207. [12] Chan F. H. F., Barry T. J., Chan A. B., & Hsiao J. H. (2020). Understanding visual attention to face emotions in social anxiety using hidden Markov models. Cognition and Emotion, 34, 1704-1710. [13] Chuk T., Chan A. B., Shimojo S., & Hsiao J. H. (2020). Eye movement analysis with switching hidden Markov models. Behavior Research Methods, 52(3), 1026-1043. [14] Ekman P.,& Friesen, W. V. (1978). Facial action coding system: A technique for the measurement of facial movement Consulting Psychologist Press A technique for the measurement of facial movement. Consulting Psychologist Press. [15] Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences, 103(18), 7192-7197. [16] Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035-1045. [17] Falck-Ytter, T. & von Hofsten, C. (2011). How special is social looking in ASD: A review. Progress in Brain Research, 189, 209-222. [18] Franzen L., Stark Z., & Johnson A. P. (2021). Individuals with dyslexia use a different visual sampling strategy to read text. Scientific Reports, 11, 6449. [19] Gunther V., Kropidlowski A., Schmidt F. M., Koelkebeck K., Kersting A., & Suslow T. (2021). Attentional processes during emotional face perception in social anxiety disorder: A systematic review and meta-analysis of eye-tracking findings. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 111, 110353. [20] Hanke M., Halchenko Y. O., Sederberg P. B., Hanson S. J., Haxby J. V., & Pollmann S. (2009). PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7, 37-53. [21] Haxby J., Gobbini M. I., Furey M. L., Ishai A., Schouten, J. L. & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430. [22] Holmqvist K., Nystrom M., Anderson R., Dewhurst R., Jarodzka H., & van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures Oxford University Press A comprehensive guide to methods and measures. Oxford University Press. [23] Hsiao, J. H. W., & Cottrell, G. (2008). Two fixations suffice in face recognition. Psychological Science, 19, 998-1006. [24] Hsiao J. H., Lan H., Zheng Y., & Chan A. B. (2021). Eye movement analysis with Hidden Markov Models (EMHMM) with co-clustering. Behavior Research Methods, 53, 2473-2486. [25] Jack, R. E., & Schyns, P. G. (2017). Toward a social psychophysics of face communication. Annual Review of Psychology, 68, 269-297. [26] Jiang Y., Guo Z., Tavakoli H. R., Leiva L. A., & Oulasvirta A. (2024). EyeFormer: predicting personalized scanpaths with transformer-guided reinforcement learning. Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology. Association for Computing Machinery, New York, USA. [27] Keehn B., Monahan P., Enneking B., Ryan T., Swigonski N., & Keehn R. M. (2024). Eye-tracking biomarkers and autism diagnosis in primary care. JAMA Network Open, 7(5), e2411190. [28] King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10, 1755-1758. [29] Kragel, J. E., & Voss, J. L. (2021). Temporal context guides visual exploration during scene recognition. Journal of Experimental Psychology: General, 150(5), 873-889. [30] Kragel, J. E., & Voss, J. L. (2022). Looking for the neural basis of memory. Trends in Cognitive Sciences, 26(1), 53-65. [31] Kriegeskorte N., Mur M., & Bandettini P. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. [32] Liu M., Zhan J., & Wang L. (2024). Specified functions of the first two fixations in face recognition: Sampling the general-to-specific facial information. iScience, 27, 110686. [33] Martinez-Conde S., Otero-Millan J., & Macknik S. L. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), 83-96. [34] Maurer, D., Grand, R. L. & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6, 255-260. [35] Mega, L. F., & Volz, K. G. (2017). Intuitive face judgments rely on holistic eye movement pattern. Frontiers in Psychology, 8, 1005. [36] Mehoudar E., Arizpe J., Baker C. I., & Yovel G. (2014). Faces in the eye of the beholder: unique and stable eye scanning patterns of individual observers. Journal of Vision, 14(7), 6-6. [37] Metzger A., Ennis R. J., Doerschner K., & Toscani M. (2024). Perceptual task drives later fixations and long latency saccades, while early fixations and short latency saccades are more automatic. Perception, 53(8), 501-511. [38] Miellet S., Caldara R., & Schyns P. G. (2011). Local Jekyll and global Hyde: The dual identity of face identification. Psychological Science, 22, 1518-1526. [39] Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1-25. [40] Parker P. R. L., Martins D. M., Leonard E. S. P., Casey N. M., Sharp S. L., Abe E. T. T., Smear M. C., Yates J. L., Mitchell J. F., & Niell C. M. (2023). A dynamic sequence of visual processing initiated by gaze shifts. Nature Neuroscience, 26, 2192-2202. [41] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., & Duchesnay É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 282-2830. [42] Pereira, F. & Botvinick, M. (2011). Information mapping with pattern classifiers: A comparative study. NeuroImage, 56, 476-496. [43] Peterson, M. F., & Eckstein, M. P. (2013). Individual differences in eye movements during face identification reflect observer-specific optimal points of fixation. Psychological Science, 24, 1216-1225. [44] Peterson M. F., Zaun I., Hoke H., Jiahui G., Duchaine B., & Kanwisher N. (2019). Eye movements and retinotopic tuning in developmental prosopagnosia. Journal of Vision, 19(9), 7-7. [45] Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. [46] Rao, R. P. N. (2024). A sensory-motor theory of the neocortex. Nature Neuroscience, 27, 1221-1235. [47] Ricci, M., Serre, T. (2022). Hierarchical models of the visual system. In D., Jaeger & R. Jung,(eds) Encyclopedia of computational neuroscience (pp.1533-1546). Springer. [48] Rousseeuw, P J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. [49] Schurgin M. W., Nelson J., Iida S., Ohira H., Chiao J. Y., & Franconeri S. L. (2014). Eye movements during emotion recognition in faces. Journal of Vision, 14(13), 14-14. [50] Shelchkova N., Tang C., & Poletti M. (2019). Task-driven visual exploration at the foveal scale. Proceedings of National Academy of Sciences, 116, 5811-5818. [51] Spiering, L., & Dimigen, O. (2025). (Micro) saccade-related potentials during face recognition: A study combining EEG, eye-tracking, and deconvolution modeling. Attention, Perception, and Psychophysics, 87(1), 133-154. [52] Stacchi L., Ramon M., Lao J., & Caldara R. (2019). Neural representations of faces are tuned to eye movements. Journal of Neuroscience, 39(21), 4113-4123. [53] Stringer C., Pachitariu M., Steinmetz N., Reddy C. B., Carandini M., & Harris K. D. (2019). Spontaneous behaviors drive multidimensional, brainwide activity. Science, 364, 255. [54] Stuart N., Whitehouse A., Palermo R., Bothe E., & Badcock N. (2023). Eye gaze in autism spectrum disorder: a review of neural evidence for the eye avoidance hypothesis. Journal of Autism and Developmental Disorders, 53(5), 1884-1905. [55] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., & Kaiser L. (2017). Attention is all you need. Conference on Neural Information Processing System, New York, USA [56] Wang L., Baumgartener F., Kaule F., Hanke M., & Pollmann S. (2019). Individual face- and house-related eye movement patterns distinctly activate FFA and PPA. Nature Communications, 10, 5532. [57] Wang Z., Meghanathan R. N., Pollmann S., & Wang L. (2024a). Common structure of saccades and microsaccades in visual perception. Journal of Vision, 24(4), 20-20. [58] Wang Z., Zhang C., Guo Q., Fan Q., & Wang L. (2024b). Concurrent oculomotor hyperactivity and deficient anti-saccade performance in obsessive-compulsive disorder. Journal of Psychiatric Research, 180, 402-410. [59] Wegner-Clemens K., Rennig J., & Beauchamp M. S. (2020). A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. PLoS ONE, 15(4), E0230866. [60] White, D., & Burton, A. M. (2022). Individual differences and the multidimensional nature of face perception. Nature Reviews Psychology, 1, 287-300. [61] Wilcockson T. D. W., Burns E. J., Xia B., Tree J., & Crawford T. J. (2020). Atypically heterogeneous vertical first fixations to faces in a case series of people with developmental prosopagnosia. Visual Cognition, 28(4), 311-323. [62] Winkler A. M., Ridgway G. R., Webster M. A., Smith, S. M. & Nichols T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 81-397. [63] Wynn J. S., Shen K., & Ryan J.D. (2019). Eye movements actively reinstate spatiotemporal mnemonic content. Vision, 3, 21. [64] Wynn J. S., Ryan J. D., & Buchsbaum B. R. (2020). Eye movements support behavioral pattern completion. Proceedings of the National Academy of Sciences, 117(11), 6246-6254. [65] Yitzhak N., Pertzov Y., Guy N., & Aviezer H. (2020). Many ways to see your feelings: Successful facial expression recognition occurs with diverse patterns of fixation distributions. Emotion, 22(5), 844-860. [66] Yu G., Herman J. P., Katz L. N., & Krauzlis R. J. (2022). Mirosaccades as a marker not as a cause for attention-related modulation. eLife, 11, e74168. [67] Zhang D., Liu X., Xu L., Li Y., Xu Y., Xiao M. Q., & Wang J. (2022). Effective differentiation between depressed patients and controls using discriminative eye movement features. Journal of Affective Disorders, 307, 237-243. [68] Zhang D., Xu L., Liu X., Cui H., Wei Y., Zheng W. S., & Wang J. (2024). Eye movement characteristics for predicting a transition to psychosis: Longitudinal changes and implications. Schizophrenia Bulletin, sbae001. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 313
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||