[1] 陈安涛. (2019). 认知控制基本功能的神经机制. 生理学报, 71(1), 149-155. [2] 杨国春, 李政汉, 伍海燕, 刘勋. (2019). 认知控制的一般性/特异性机制: 研究逻辑和争论. 生理学报, 71(1), 140-148. [3] Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 1458-1463. [4] Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652. [5] Botvinick M. M., Cohen J. D., & Carter C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539-546. [6] Braem S., Abrahamse E. L., Duthoo W., & Notebaert W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, Article 1134. [7] Braem S., Bugg J. M., Schmidt J. R., Crump M. J. C., Weissman D. H., Notebaert W., & Egner T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769-783. [8] Chen Y. Q., Gao W., Li Z. F., Yan M. M., Yin S. H., Hu N., & Chen A. (2024). Observation of conflict triggers conflict adaptation. Canadian Journal of Experimental Psychology, 78(3), 190-202. [9] Chen Y. Q., Li Z. F., Li Q., Wang J., Hu N., Zheng Y., & Chen A. T. (2024). The neural dynamics of conflict adaptation induced by conflict observation: Evidence from univariate and multivariate analysis. International Journal of Psychophysiology, 198, 112324. [10] Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49(7), 1953-1961. [11] Cracco E., Braem S., & Brass M. (2022). Observing conflicting actions elicits conflict adaptation. Journal of Experimental Psychology: General, 151(2), 493-505. [12] Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78(2), 94-98. [13] Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380. [14] Fernandez-Duque, D., & Knight, M. (2008). Cognitive control: Dynamic, sustained, and voluntary influences. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 340-355. [15] Forster, S. E., & Cho, R. Y. (2014). Context specificity of post-error and post-conflict cognitive control adjustments. PLoS ONE, 9(3), Article e90281. [16] Freitas A. L., Bahar M., Yang S., & Banai R. (2007). Contextual adjustments in cognitive control across tasks. Psychological Science, 18(12), 1040-1043. [17] Funes M. J., Lupiáñez J., & Humphreys G. (2010). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 147-161. [18] Gratton G., Coles M. G., & Donchin E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468-484. [19] Gratton G., Coles M. G. H., & Donchin E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506. [20] Hinault T., Larcher K., Zazubovits N., Gotman J., & Dagher A. (2019). Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging. Human Brain Mapping, 40(1), 80-97. [21] Hommel B., Proctor R. W., & Vu, K. P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1-17. [22] Kałamała P., Szewczyk J., Senderecka M., & Wodniecka Z. (2018). Flanker task with equiprobable congruent and incongruent conditions does not elicit the conflict N2. Psychophysiology, 55(2), Article e12980. [23] Kleiman T., Hassin R. R., & Trope Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498-503. [24] Larson M. J., Clayson P. E., & Clawson A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297. [25] Larson M. J., Clayson P. E., Kirwan C. B., & Weissman D. H. (2016). Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds. Psychophysiology, 53(6), 814-822. [26] Larson M. J., Kaufman D. A. S., & Perlstein W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47(3), 663-670. [27] Li, Z., & Lou, J. F. (2019). Flanker tasks based on congruency manipulation are biased measures of selective attention in perceptual load studies. Attention, Perception, and Psychophysics, 81(6), 1836-1845. [28] Li Z. F., Wang J., Chen Y. Q., Li Q., Yin S. H., & Chen A. T. (2024). Attenuated conflict self-referential information facilitating conflict resolution. npj Science of Learning, 9(1), Article 47. [29] Liotti M., Woldorff M. G., Perez III R., & Mayberg H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701-711. [30] Liu P. D., Chen A. T., Li C., Li H., & West R. (2012). Conflict adaptation is reflected by response interference. Journal of Cognitive Psychology, 24(4), 457-467. [31] Mayr U., Awh E., & Laurey P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450-452. [32] Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106(2), 1071-1080. [33] Oberauer K., Lewandowsky S., Farrell S., Jarrold C., & Greaves M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin and Review, 19(5), 779-819. [34] Parris B. A., Hasshim N., Wadsley M., Augustinova M., & Ferrand L. (2022). The loci of Stroop effects: A critical review of methods and evidence for levels of processing contributing to color-word Stroop effects and the implications for the loci of attentional selection. Psychological Research, 86(4), 1029-1053. [35] Rawls E., Miskovic V., & Lamm C. (2020). Delta phase reset predicts conflict-related changes in P3 amplitude and behavior. Brain Research, 1730, Article 146662. [36] Rey-Mermet A., Gade M., & Steinhauser M. (2019). Sequential conflict resolution under multiple concurrent conflicts: An ERP study. NeuroImage, 188, 411-418. [37] Schmidt, J. R. (2013). Temporal learning and list-level proportion congruency: Conflict adaptation or learning when to respond? PLoS ONE, 8(11), Article e82320. [38] Schmidt, J. R., & De Houwer, J. (2011). Now you see it, now you don't: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138(1), 176-186. [39] Schmidt, J. R., & Weissman, D. H. (2016). Congruency sequence effects and previous response times: Conflict adaptation or temporal learning? Psychological Research, 80(4), 590-607. [40] Spinelli, G., & Lupker, S. J. (2022). Conflict-monitoring theory in overtime: Is temporal learning a viable explanation for the congruency sequence effect? Journal of Experimental Psychology: Human Perception and Performance, 48(5), 497-530. [41] Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276-315. [42] Tang D. D., Hu L., Li H., Zhang Q. L., & Chen A. T. (2013). The neural dynamics of conflict adaptation within a look-to-do transition. PLoS ONE, 8(2), Article e57912. [43] Verbruggen F., Liefooghe B., Notebaert W., & Vandierendonck A. (2005). Effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition. Acta Psychologica, 120(3), 307-326. [44] von Gunten C. D., Volpert-Esmond H. I., & Bartholow B. D. (2018). Temporal dynamics of reactive cognitive control as revealed by event-related brain potentials. Psychophysiology, 55(3), Article e13007. [45] Weissman, D. H. (2020). Interacting congruency effects in the hybrid Stroop-Simon task prevent conclusions regarding the domain specificity or generality of the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(5), 945-967. [46] West R., Jakubek K., Wymbs N., Perry M., & Moore K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167(1), 38-48. [47] Wühr P., Duthoo W., & Notebaert W. (2015). Generalizing attentional control across dimensions and tasks: Evidence from transfer of proportion-congruent effects. Quarterly Journal of Experimental Psychology, 68(4), 779-801. [48] Wühr, P., & Heuer, H. (2017). Response preparation, response conflict, and the effects of irrelevant flanker stimuli. Advances in Cognitive Psychology, 13(1), 70-82. [49] Yang G. C., Xu H. H., Li Z. H., Nan W. Z., Wu H. Y., Li Q., & Liu X. (2021). The congruency sequence effect is modulated by the similarity of conflicts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(10), 1705-1719. [50] Zhang M. K., Li Q., Li Y. L., Chen Y. Q., Gu Y., Yin S. H., & Chen A. T. (2023). Temporal dynamics of conflict adaptation across different conflict strengths. Psychophysiology, 60(1), Article e14160. |