The Large-Scale Brain Network Model of Sleep Deprivation on Risky Decision Making

Chen Xing, Guo Bowen, Yan Kaikai, Mao Tianxin, Rao Hengyi

Journal of Psychological Science ›› 2026, Vol. 49 ›› Issue (1) : 68-81.

PDF(963 KB)
PDF(963 KB)
Journal of Psychological Science ›› 2026, Vol. 49 ›› Issue (1) : 68-81. DOI: 10.16719/j.cnki.1671-6981.20260108
General Psychology,Experimental Psychology & Ergonomics

The Large-Scale Brain Network Model of Sleep Deprivation on Risky Decision Making

  • Chen Xing, Guo Bowen, Yan Kaikai, Mao Tianxin, Rao Hengyi
Author information +
History +

Abstract

Sleep is a fundamental physiological phenomenon that is essential for physical health, cognitive ability and emotional regulation. However, with technological advances and the accelerated pace of life, sleep deprivation has become increasingly prevalent, significantly impairing the cognitive and emotional functioning of individuals. Risky decision making, as a type of uncertain decision making, refers to the process by which people weigh options that have multiple outcomes and the probability of each outcome occurring is known. People make risky decisions all the time in their daily lives and at work. Most studies have confirmed that sleep deprivation significantly affects an individual's risky decision making preferences.
The neural processes by which sleep deprivation affects risky decision-making involve three main large-scale brain networks: the central executive network, the reward network, and the salience network. Specifically, when individuals experience total sleep deprivation, the activation level of the central executive network is significantly reduced, i.e., the dorsolateral prefrontal activation level decreases and the individual's inhibitory control is severely impaired. The activation levels of the orbitofrontal cortex and the ventral medial prefrontal within the reward network decreased, but the activation level of the striatum was enhanced, and the brain regions interacted with each other to greatly weaken the individual's ability to resist immediate rewards and avoid impulsive behaviors. At the same time, decreased activation levels in the amygdala and the anterior insula within the salience network, but enhanced activation levels in the anterior cingulate cortex, lead individuals to make more irrational decisions. The same three large-scale brain networks are included when individuals with partial sleep deprivation make risky decisions. The difference is that partial sleep deprivation only significantly decreases activation levels in the dorsolateral prefrontal and enhances activation levels in the anterior insula. However, partial sleep deprivation reduces the functional connectivity of the dorsolateral prefrontal and striatum, the anterior insula, and the orbitofrontal cortex and amygdala, resulting in the inability of individuals to effectively inhibit high-risk behaviors and reduce decision-making performance.
Previous studies have mostly focused on the effects of different levels of sleep deprivation on the level of activation in specific brain regions and single brain networks, but ignored the overall role of large-scale brain networks. It has been found that the brain integrates and processes information in the form of brain networks, and multiple brain networks work together to ultimately change an individual's behavioral performance. Complete sleep deprivation affects an individual's risky decision-making performance by directly altering the activation levels of the central executive, reward, and salience networks. When an individual receives a reward or suffers a loss, the activation of the reward network or salience network is further enhanced, which in turn affects the central executive network and ultimately alters the individual's subsequent risky decision-making performance. The feedback mechanism for risky decision-making in partial sleep deprivation is impaired, making it difficult to effectively regulate individual decision-making behavior. As in the case of total sleep deprivation, the results of risky decision making in individuals with partial sleep deprivation were fed back to the reward and salience networks, which influenced the individual's future decision making.
Future research is suggested to further explore the following issues. Considering the development prospects of machine learning and deep learning technologies, future research should use these technologies to computationally model the rich brain network data to further deepen the understanding of brain function and structure. In addition, the dynamic effects of different degrees of sleep deprivation on risky decision making are further refined by carefully dividing sleep deprivation time. At the same time, the generalizability of the effects of sleep deprivation on decision making is explored.

Key words

total sleep deprivation / partial sleep deprivation / risk decision-making / large-scale brain network model

Cite this article

Download Citations
Chen Xing, Guo Bowen, Yan Kaikai, Mao Tianxin, Rao Hengyi. The Large-Scale Brain Network Model of Sleep Deprivation on Risky Decision Making[J]. Journal of Psychological Science. 2026, 49(1): 68-81 https://doi.org/10.16719/j.cnki.1671-6981.20260108

References

[1] 邓尧, 王梦梦, 饶恒毅. (2022). 风险决策研究中的仿真气球冒险任务. 心理科学进展, 30(6), 1377-1392.
[2] 龚诗阳, 张义博, 高月涛. (2023). 睡眠剥夺与购物后悔:来自大规模个体层面数据的证据. 心理学报, 55(2), 286-302.
[3] 刘晓婷, 张丽锦, 张宁. (2019). 睡眠质量对冒险行为影响的证据及解析. 心理科学进展, 27(11), 1875-1886.
[4] 徐四华, 方卓, 饶恒毅. (2013). 真实和虚拟金钱奖赏影响风险决策行为. 心理学报, 45(8), 874-886.
[5] Acheson A., Richards J. B., & de Wit H. (2007). Effects of sleep deprivation on impulsive behaviors in men and women. Physiology and Behavior, 91(5), 579-587.
[6] Alkozei A., Haack M., Skalamera J., Smith R., Satterfield B. C., Raikes A. C., & Killgore W. D. (2018). Chronic sleep restriction affects the association between implicit bias and explicit social decision making. Sleep Health, 4(5), 456-462.
[7] Bamford, I. J., & Bamford, N. S. (2019). The striatum's role in executing rational and irrational economic behaviors. Neuroscientist, 25(5), 475-490.
[8] Banks, S., & Dinges, D. F. (2007). Behavioral and physiological consequences of sleep restriction. Journal of Clinical Sleep Medicine, 3(5), 519-528.
[9] Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52(2), 336-372.
[10] Bechara A., Damasio A. R., Damasio H., & Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 7-15.
[11] Bechara A., Damasio H., & Damasio A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295-307.
[12] Becker M., Yu Y., & Cabeza R. (2023). The influence of insight on risky decision making and nucleus accumbens activation. Scientific Reports, 13, 17159.
[13] Beebe D. W., DiFrancesco M. W., Tlustos S. J., McNally K. A., & Holland S. K. (2009). Preliminary fMRI findings in experimentally sleep-restricted adolescents engaged in a working memory task. Behavioral and Brain Functions, 5, 9-15.
[14] Bertocci M. A., Afriyie-Agyemang Y., Rozovsky R., Iyengar S., Stiffler R., Aslam H. A., & Phillips M. L. (2023). Altered patterns of central executive, default mode and salience network activity and connectivity are associated with current and future depression risk in two independent young adult samples. Molecular Psychiatry, 28(3), 1046-1056.
[15] Blumberg M. S., Lesku J. A., Libourel P. A., Schmidt M. H., & Rattenborg N. C. (2020). What is REM sleep? Current Biology, 30(1), R38-R49.
[16] Boyce R., Glasgow S. D., Williams S., & Adamantidis A. (2016). Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science, 352(6287), 812-816.
[17] Brand M., Grabenhorst F., Starcke K., Vandekerckhove M. M. P., & Markowitsch H. J. (2007). Role of the amygdala in decisions under ambiguity and decisions under risk: Evidence from patients with Urbach-Wiethe disease. Neuropsychologia, 45(6), 1305-1317.
[18] Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118-1121.
[19] Brunet J. F., McNeil J., Doucet É., & Forest G. (2020). The association between REM sleep and decision-making: Supporting evidences. Physiology and Behavior, 225, 113109.
[20] Buelow, M. T., & Suhr, J. A. (2009). Construct validity of the Iowa gambling task. Neuropsychology Review, 19(1), 102-114.
[21] Cao J., Herman A. B., West G. B., Poe G., & Savage V. M. (2020). Unraveling why we sleep: Quantitative analysis reveals abrupt transition from neural reorganization to repair in early development. Science Advances, 6(38), eaba0398.
[22] Carruzzo F., Giarratana A.O., del Puppo L., Kaiser S., Tobler P. N., & Kaliuzhna M. (2023). Neural bases of reward anticipation in healthy individuals with low, mid, and high levels of schizotypy. Scientific Reports, 13, 9953.
[23] Cazzell M., Li L., Lin Z. J., Patel S. J., & Liu H. (2012). Comparison of neural correlates of risk decision making between genders: An exploratory fNIRS study of the balloon analogue risk task (BART). NeuroImage, 62(3), 1896-1911.
[24] Chai Y., Gehrman P., Yu M., Mao T., Deng Y., Rao J., & Rao H. (2023). Enhanced amygdala-cingulate connectivity associates with better mood in both healthy and depressive individuals after sleep deprivation. PNAS, 120(26), e2214505120.
[25] Chen J., Gong X., Wang L., Xu M., Zhong X., Peng Z., & Weng X. (2023). Altered postcentral connectivity after sleep deprivation correlates to impaired risk perception: A resting-state functional magnetic resonance imaging study. Brain Sciences, 13(3), 514-527.
[26] Chen J., Zhou L., Jiang C., Chen Z., Zhang L., Zhou H., & Liu J. (2022). Impaired ocular tracking and cortical atrophy in idiopathic rapid eye movement sleep behavior disorder. Movement Disorders, 37(5), 972-982.
[27] Cui L., Ye M., Sun L., Zhang S., & He G. (2022). Common and distinct neural correlates of intertemporal and risky decision-making: Meta-analytical evidence for the dual-system theory. Neuroscience and Biobehavioral Reviews, 141, 104851.
[28] Daurat A., Bret-Dibat J., & Yagoubi R. E. (2018). Risk preference in patients with obstructive sleep apnoea syndrome is modulated by the gain or loss context. Neuropsychological, 16(4), 329-341.
[29] Davidenko O., Bonny J. M., Morrot G., Jean B., Claise B., Benmoussa A., Fromentin G., & Darcel N. (2018). Differences in BOLD responses in brain reward network reflect the tendency to assimilate a surprising flavor stimulus to an expected stimulus. NeuroImage, 183, 37-46.
[30] Delazer M., Högl B., Zamarian L., Wenter J., Ehrmann L., Gschliesser V., Elisabeth B., Werner P., & Frauscher B. (2012). Decision making and executive functions in REM sleep behavior disorder. Sleep, 35(5), 667-673.
[31] Demos K., Hart C., Sweet L., Mailloux K., Trautvetter J., Williams S., Wing R. R., & McCaffery J. (2016). Partial sleep deprivation impacts impulsive action but not impulsive decision-making. Physiology and Behavior, 164, 214-219.
[32] Deza Araujo Y. I., Nebe S., Neukam P. T., Pooseh S., Sebold M., Garbusow M., Andress H., & Smolka M. N. (2018). Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males. Cognitive, Affective, and Behavioral Neuroscience, 18(3), 536-549.
[33] Dickinson D. L., Brookes J., Ferguson C., & Drummond, S. P. A. (2022). The impact of self-selected short sleep on monetary risk taking. Journal of Sleep Research, 31(3), e13529.
[34] Dinges D. F., Rogers N. L., & Baynard M. D. (2005). Chronic sleep deprivation. In M. H. Kryger, T. Roth, & W. C. Dement,(Eds.), Principles and practice of sleep medicine (pp. 67-76). WB Saunders Company.
[35] Endo T., Roth C., Landolt H. P., Werth E., Aeschbach D., Achermann P., & Borbély A. A. (1998). Selective REM sleep deprivation in humans: Effects on sleep and sleep EEG. The American Journal of Physiology, 274(4), R1186-R1194.
[36] Farahani F. V., Fafrowicz M., Karwowski W., Douglas P. K., Domagalik A., Beldzik E., Halszka O., & Marek T. (2019). Effects of chronic sleep restriction on the brain functional network, as revealed by graph theory. Frontiers in Neuroscience, 13, 1087.
[37] Ferrarelli F., Kaskie R., Laxminarayan S., Ramakrishnan S., Reifman J., & Germain A. (2019). An increase in sleep slow waves predicts better working memory performance in healthy individuals. NeuroImage, 191, 1-9.
[38] Gao L., Bai L., Zhang Y., Dai X., Netra R., Min Y., Zhou, F Q., Chen N., Dun W. H., & Zhang M. (2015). Frequency-dependent changes of local Resting oscillations in sleep-deprived brain. PLoS ONE, 10(3), e0120323.
[39] Garbarino S., Lanteri P., Bragazzi N. L., Magnavita N., & Scoditti E. (2021). Role of sleep deprivation in immune-related disease risk and outcomes. Communications Biology, 4(1), 1304.
[40] Genzel L., Spoormaker V., Konrad B., & Dresler M. (2015). The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiology of Learning and Memory, 122, 110-121.
[41] Griffa A., Amico E., Liégeois R., Van De Ville D., & Preti M. G. (2022). Brain structure-function coupling provides signatures for task decoding and individual fingerprinting. NeuroImage, 250, 118970.
[42] Gujar N., Yoo S., Hu P., & Walker M. P. (2011). Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. Journal of Neuroscience, 31(12) 4466-4474.
[43] Hare T. A., Camerer C. F., & Rangel A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646-648.
[44] Harris, J. C. (2018). Slow-wave sleep disruption in adolescence: Brain responses to monetary reward and loss[Unpublished master' s thesis]. University of Michigan.
[45] Hirschbichler S. T., Rothwell J. C., & Manohar S. G. (2022). Dopamine increases risky choice while D2 blockade shortens decision time. Experimental Brain Research, 240(12), 3351-3360.
[46] Hisler, G., & Krizan, Z. (2017). Sleepiness and behavioral risk-taking: Do sleepy people take more or less risk? Behavioral Sleep Medicine, 17(3), 364-377.
[47] Holroyd C. B., Ribas-Fernandes J. J. F., Shahnazian D., Silvetti M., & Verguts T. (2018). Human midcingulate cortex encodes distributed representations of task progress. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6398-6403.
[48] Horne, J. (1988). The functions of sleep in humans and other mammals. Oxford University Press..
[49] Johnston, M. (2014). Secondary data analysis: A method of which the time has come. Qualitative and Quantitative Methods in Libraries, 3, 619-626.
[50] Jung W. H., Lee S., Lerman C., & Kable J. W. (2018). Amygdala functional and structural connectivity predicts individual risk tolerance. Neuron, 98, 394-404.
[51] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-292.
[52] Khan, M. A., & Al-Jahdali, H. (2023). The consequences of sleep deprivation on cognitive performance. Neurosciences (Riyadh), 28(2), 91-99.
[53] Killgore, W. D. (2007). Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychological Reports, 100, 613-626.
[54] Killgore W. D., Balkin T. J., & Wesensten N. J. (2006). Impaired decision making following 49 h of sleep deprivation. Journal of Sleep Research, 15(1), 7-13.
[55] Killgore W. D., Grugle N. L., Killgore D. B., Leavitt B. P., Watlington G. I., McNair S., & Balkin T. J. (2008). Restoration of risk-propensity during sleep deprivation: Caffeine, dextroamphetamine, and modafinil. Aviation, Space, and Environmental Medicine, 79(9), 867-874.
[56] Killgore W. D., Kamimori G. H., & Balkin T. J. (2011). Caffeine protects against increased risk-taking propensity during severe sleep deprivation. Journal of Sleep Research, 20(3), 395-403.
[57] Knutson B., Wimmer G. E., Kuhnen C. M., & Winkielman P. (2008). Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. NeuroReport, 19(5), 509-513.
[58] Kolling N., Wittmann M., & Rushworth, M. F. S. (2014). Multiple neural mechanisms of decision making and their competition under changing risk pressure. Neuron, 81(5), 1190-1202.
[59] Krause A. J., Simon E. B., Mander B. A., Greer S. M., Saletin J. M., Goldstein-Piekarski A. N., & Walker M. P. (2017). The sleep-deprived human brain. Nature Reviews Neuroscience, 18(7), 404-418.
[60] Lejuez C. W., Read J. P., Kahler C. W., Richards J. B., Ramsey S. E., Stuart G. L., Strong, D R., & Brown R. A. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8(2), 75-84.
[61] Levine, D. S. (2017). Neural network models of human executive function and decision making. Executive Functions in Health and Disease, 5, 105-127.
[62] Liang Y., Wang Z., Huang Z., Gorn G. J., & Weinberg C. B. (2022). Insufficient sleep and price sensitivity. SSRN.
[63] Lim J. Y. L., Boardman J., Dyche J., Anderson C., Dickinson D. L., & Drummond, S. P. A. (2022). Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep, 45(9), zsac120.
[64] Liu, L., & Zhou, R. (2016). Effect of 72 h of sleep deprivation on the Iowa gambling task. Noropsikiyatri Arsivi, 53(4), 357-360.
[65] Li X., Yoncheva Y., Yan C., Castellanos F. X., & St-Onge M. (2024). Chronic mild sleep restriction does not lead to marked neuronal alterations compared with maintained adequate sleep in adults. The Journal of Nutrition, 154(2), 446-454.
[66] Luo, L. (2021). Architectures of neuronal circuits. Science, 373(6559), eabg7285.
[67] Ma N., Dinges D. F., Basner M., & Rao H. Y. (2015). How acute total sleep loss affects the attending brain: A meta-analysis of neuroimaging studies. Sleep, 38(2), 233-240.
[68] Mao T., Fang Z., Chai Y., Deng Y., Rao J., Quan P.,& Rao H. (2024). Sleep deprivation attenuates neural responses to outcomes from risky decision-making. Psychophysiology, 31, e14465.
[69] Mao, T., & Rao, H. (2024). Mild sleep loss impacts food cue processing in adolescent brain. Sleep, 47(4), zsad074.
[70] Mao T., Yang J., Ru T., Chen Q., Shi H., Zhou J., & Zhou G. (2018). Does red light induce people to be riskier? Exploring the colored light effect on the Balloon Analogue Risk Task (BART). Journal of Environmental Psychology, 57, 73-82.
[71] Maric A., Montvai E., Werth E., Storz M., Leemann J., Weissengruber S., Ruff, C C., Huber R., & Baumann C.R. (2017). Insufficient sleep: Enhanced risk-seeking relates to low local sleep intensity. Annals of Neurology, 82(3), 409-418.
[72] Ma Y., Liang L., Zheng F., Shi L., Zhong B., & Xie W. (2020). Association between sleep duration and cognitive decline. Journal of the Amerixan Medical Association, 3(9), e2013573.
[73] McElroy, T., & Dickinson, D. L. (2019). Thinking about complex decisions: How sleep and time-of-day influence complex choices. Consciousness and Cognition, 76, 102824.
[74] Menon, V. (2015). Salience network. In A. W. Toga (Ed.), Brain mapping (pp. 597-611). Academic Press.
[75] Menz M. M., Büchel C., & Peters J. (2012). Sleep deprivation is associated with attenuated parametric valuation and control signals in the midbrain during value-based decision making. The Journal of Neuroscience, 32(20), 6937-6946.
[76] Obeso I., Herrero M. T., Ligneul R., Rothwell J. C., & Jahanshahi M. (2021). A causal role for the right dorsolateral prefrontal cortex in avoidance of risky choices and making advantageous selections. Neuroscience, 458, 166-179.
[77] Ota K., Shinya M., & Kudo K. (2019). Transcranial direct current stimulation over dorsolateral prefrontal cortex modulates risk-attitude in motor decision-making. Frontier in Human Neuroscience, 6(13), 297.
[78] Owens J., Wang G., Lewin D., Skora E., & Baylor A. (2017). Association between short sleep duration and risk behavior factors in middle school students. Sleep, 40(1), zsw004.
[79] Pace-Schott E. F., Zimmerman J. P., Bottary R. M., Lee E. G., Milad M. R., & Camprodon J. A. (2017). Resting state functional connectivity in primary insomnia, generalized anxiety disorder and controls. Psychiatry Research Neuroimaging, 265, 26-34.
[80] Papatriantafyllou E., Efthymiou D., Zoumbaneas E., Popescu C. A., & Vassilopoulou E. (2022). Sleep deprivation: Effects on weight loss and weight loss maintenance. Nutrients, 14(8), 1549.
[81] Peng X., Liu Y., Fan D., Lei X., Liu Q., & Yu J. (2020). Deciphering age differences in experience-based decision-making: The role of sleep. Nature and Science of Sleep, 12, 679-691.
[82] Pham H. T., Chuang H. L., Kuo C. P., Yeh T. P., & Liao W. C. (2021). Electronic device use before bedtime and sleep quality among university Students. Healthcare, 9(9), 1091.
[83] Pittaras E., Callebert J., Dorey R., Chennaoui M., Granon S., & Rabat A. (2018). Mouse gambling task reveals differential effects of acute sleep debt on decision-making and associated neurochemical changes. Sleep, 41(11), zsy168.
[84] Quan P., He L., Mao T., Fang Z., Deng Y., Pan Y., Zhang, X C., Zhao K., Lei H., & Rao H. (2022). Cerebellum anatomy predicts individual risk-taking behavior and risk tolerance. NeuroImage, 254, 119148.
[85] Rao H., Korczykowski M., Pluta J., Hoang A., & Detre J. A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI study of the Balloon Analog Risk Task (BART). NeuroImage, 42(2), 902-910.
[86] Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681-766.
[87] Raven F., Van der Zee, E. A., Meerlo P., & Havekes R. (2018). The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Medicine Reviews, 39, 3-11.
[88] Rayan A., Agarwal A., Samanta A., Severijnen E., van der Meij J., & Genzel L. (2022). Sleep scoring in rodents: Criteria, automatic approaches and outstanding issues. European Journal of Neuroscience, 59(4), 526-553.
[89] Rogers R. D., Owen A. M., Middleton H. C., Williams E. J., Pickard J. D., Sahakian B. J., & Robbins T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19(20), 9029-9038.
[90] Rossa K. R., Smith S. S., Allan A. C., & Sullivan K. A. (2014). The effects of sleep restriction on executive inhibitory control and affect in young adults. Journal of Adolescent Health, 55(2), 287-92.
[91] Rudebeck, P. H., & Rich, E. L. (2018). Orbitofrontal cortex. Current Biology, 28(18), R1083-R1088.
[92] Saksvik-Lehouillier I., Saksvik S. B., Dahlberg J., Tanum T. K., Ringen H., Karlsen H. R., & Olsen A. (2020). Mild to moderate partial sleep deprivation is associated with increased impulsivity and decreased positive affect in young adults. Sleep, 43(10), zsaa078.
[93] Salfi F., Lauriola M., Tempesta D., Calanna P., Socci V., De Gennaro L., & Ferrara M. (2020). Effects of total and partial sleep deprivation on reflection impulsivity and risk-taking in deliberative decision-making. Nature and Science of Sleep, 27(12), 309-324.
[94] Seeley, C. J. (2015). Rapid eye movement sleep, punishment structure and decision-making of the Iowa gambling task. Queen's University.
[95] Sela T., Kilim A., & Lavidor M. (2012). Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Frontiers in Neuroscience, 6(22), 1-11.
[96] Shao Y., Peng Z., Xu L., Lian J., An X., & Cheng M. Y. (2023). Decrease in the P2 amplitude of object working memory after 8 h-recovery sleep following 36 h-total sleep deprivation: An ERP study. Brain Sciences, 13, 1470-1480.
[97] Shulman E. P., Smith A. R., Silva K., Icenogle G., Duell N., Chein J., & Steinberg L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103-117.
[98] Singh, V. (2013). Dual conception of risk in the Iowa gambling task: Effects of sleep deprivation and test-retest gap. Frontiers in Psychology, 4, 628-636.
[99] Spoormaker V. I., Gvozdanovic G. A., Sämann P. G., & Czisch M. (2014). Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects. Experimental Brain Research, 232(5), 1547-1554.
[100] Steinberg, L. (2010). A dual systems model of adolescent risk-taking. Developmental Psychobiology, 52(3), 216-224.
[101] Stepan M. E., Altmann E. M., & Fenn K. M. (2021). Slow-wave sleep during a brief nap is related to reduced cognitive deficits during sleep deprivation. Sleep, 44(11), zsab152.
[102] Studler M., Gianotti L. R. R., Koch K., Hausfeld J., Tarokh L., Maric A., & Knoch D. (2022). Local slow-wave activity over the right prefrontal cortex reveals individual risk preferences. NeuroImage, 253, 119086.
[103] Sundelin T., Bayard F., Schwarz J., Cybulski L., Petrovic P., & Axelsson J. (2019). Framing effect, probability distortion, and gambling tendency without feedback are resistant to two nights of experimental sleep restriction. Scientific Reports, 9(1), 8554.
[104] Tamm S., Nilsonne G., Schwarz J., Lamm C., Kecklund G., Petrovic P., & Lekander M. (2017). The effect of sleep restriction on empathy for pain: An fMRI study in younger and older adults. Scientific Reports, 7(1), 12236.
[105] Telzer, E H., Fuligni A. J., Lieberman M. D., & Galván A. (2013). The effects of poor quality sleep on brain function and risk taking in adolescence. NeuroImage, 71(1), 275-283.
[106] Thomas M. L., Sing H. C., Belenky G., Holcomb H., Mayberg H., Dannals R., & Redmond D. (2000). Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of Sleep Research, 9(4), 335-352.
[107] Thomas M. L., Sing H. C., Belenky G., Holcomb H., Mayberg H., Dannals R., & Redmond D. P. (2003). Neural basis of alertness and cognitive performance impairments during sleepiness II. Effects of 48 and 72 h of sleep deprivation on waking human regional brain activity. Thalamus and Related Systems, 2(3), 199-229.
[108] Tomasi D., Wang G. J., & Volkow N. (2016). Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: Effects of sleep deprivation. Translational Psychiatry, 6, e828.
[109] Uddin, L. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 55-61.
[110] Uddin L. Q., Yeo B. T. T., & Spreng R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32, 926-942.
[111] Vaccaro A., Kaplan Dor Y., Nambara K., Pollina E. A., Lin C., Greenberg M. E., & Rogulja D. (2020). Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell, 181(6), 1307-1328.
[112] van Dongen, H. P. A., Maislin G., Mullington J. M., & Dinges D. F. (2003). The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26(2), 117-126.
[113] van Duijvenvoorde A. C., Huizenga H. M., Somerville L. H., Delgado M. R., Powers A., Weeda W. D., Casey B. J., & Figner B. (2015). Neural correlates of expected risks and returns in risky choice across development. Journal of Neuroscience, 35(4), 1549-1560.
[114] van Enkhuizen J., Henry B. L., Minassian A., Perry W., Milienne-Petiot M., Higa K. K., Geyer M. A., & Young J. W. (2014). Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology, 39(13), 3112-3122.
[115] Vendrig, B. C. J. (2013). The influence of sleeping behaviour on consumers' likelihood of purchase: A case of consumer electronic products[Unpublished master's thesis].Erasmus University.
[116] Venkatraman, V., Chuah, Y. M. L, Huettel, S. A. & Chee, M. W. L. (2007). Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep, 30(5), 603-609.
[117] Villafuerte S., Heitzeg M. M., Foley S., Yau W. Y., Majczenko K., Zubieta J. K., Zucker, R. A. Burmeister, M. (2012). Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Molecular Psychiatry, 17(5), 511-519.
[118] Wang Y. J., Dai C. M., Shao Y. C., Wang C., & Zhou Q. X. (2022). Changes in ventromedial prefrontal cortex functional connectivity are correlated with increased risk-taking after total sleep deprivation. Behavioural Brain Research, 418, 1-8.
[119] Webb, W. B., & Agnew, H. W. (1974). The effects of a chronic limitation of sleep length. Psychophysiology, 11(3), 265-274.
[120] Whitney P., Hinson J. M., Jackson M. L., & Van Dongen, H. P. A. (2015). Feedback blunting: Total sleep deprivation impairs decision making that requires updating based on feedback. Sleep, 38(5), 745-754.
[121] Wilckens K. A., Ferrarelli F., Walker M. P., & Buysse D. J. (2018). Slow-wave activity enhancement to improve cognition. Trends in Neurosciences, 41(7), 470-482.
[122] Windred D. P., Burns A. C., Lane J. M., Saxena R., Rutter M. K., Cain S. W., & Phillips, A. J. K. (2023). Sleep regularity is a stronger predictor of mortality risk than sleep duration: A prospective cohort study. Sleep, 47(1), zsad253.
[123] Womack S. D., Hook J. N., Reyna S., H., & Ramos M. (2013). Sleep loss and risk-taking behavior: A review of the literature. Behavioral Sleep Medicine, 11(5), 343-359.
[124] Xi C., Ding J., Li X., & Wang K. (2019). Impaired emotional memory and decision-making following primary insomnia. Medicine, 98(29), e16512.
[125] Yoo S. S., Gujar N., Hu P., Jolesz F. A., & Walker M. P. (2007). The human emotional brain without sleep—a prefrontal amygdala disconnect. Current Biology, 17(20), R877-R885.
[126] Zha R., Li P., Liu Y., Alarefi A., Zhang X., & Li J. (2022). The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Human Brain Mapping, 43(12), 3840-3856.
[127] Zhao L., Zhao Y., Su D., Lv Z., Xie F., Hu P., Porter K. L. A., Mazzei I., & Fang Y. (2023). Cognitive functions in patients with moderate-to-severe obstructive sleep apnea syndrome with emphasis on executive functions and decision-making. Brain Sciences, 13, 1436-1446.
PDF(963 KB)

Accesses

Citation

Detail

Sections
Recommended

/