The Role of Basal Ganglia in Language Comprehension

Tan Yingying, Zhang Ran, Ye Zheng, Zhou Xiaolin

Journal of Psychological Science ›› 2026, Vol. 49 ›› Issue (1) : 238-251.

PDF(620 KB)
PDF(620 KB)
Journal of Psychological Science ›› 2026, Vol. 49 ›› Issue (1) : 238-251. DOI: 10.16719/j.cnki.1671-6981.20260121
Theories & History of Psychology

The Role of Basal Ganglia in Language Comprehension

  • Tan Yingying1,2, Zhang Ran1, Ye Zheng3, Zhou Xiaolin4
Author information +
History +

Abstract

The basal ganglia (BG) are a group of subcortical nuclei that play critical roles in motor control, reinforcement learning, and language processing. Anatomically, the BG include the striatum, globus pallidus, subthalamic nucleus, and substantia nigra, which are closely connected to the cerebral cortex. Traditionally, the BG have been implicated primarily in motor functions. However, emerging evidence has shown that they also play important roles in language processing. Patients with BG dysfunction, such as those with Parkinson's disease or Huntington's disease, exhibit not only motor impairments but also a range of language disorders. These findings challenge traditional Broca-Wernicke-Geschwind language model, suggesting that both cortical and subcortical structures, particularly the BG, are essential for language function.
While earlier research has primarily focused on the role of the BG in speech production, recent studies have expanded the scope to encompass language comprehension. Although language comprehension and production share certain neural mechanisms, they also involve distinct processes. It remains unclear, however, whether the different BG nuclei contribute differently to various aspects of language comprehension, such as semantics, syntax, phonology, and pragmatics. This review summarizes research using methods from neuropsychology, neuroimaging, and psychopharmacology to address these questions.
Our review indicates that the dorsal striatum, composed of the caudate and putamen, is crucial for regulating almost all aspects of language comprehension. During both semantic and syntactic processing, the dorsal striatum is involved in monitoring and modulating information selection, activating goal-relevant information while inhibiting irrelevant or less-preferred ones. Neuroimaging studies reveal an anterior-posterior gradient within the dorsomedial striatum, with more anterior regions supporting complex syntactic processing. Moreover, the dorsal striatum is involved in pragmatic processing, as it coactivates with the frontal-temporal network to generate context-appropriate meanings. Studies also suggest that the putamen contributes uniquely to phonological processing. In contrast, the globus pallidus and subthalamic nucleus, which are commonly targeted in deep brain stimulation (DBS) for medical treatment, are primarily linked to speech production. Although some studies suggest their involvement in semantic and syntactic processing, others have failed to observe activation in these areas. Further research is necessary to clarify the precise role of these nuclei in language processing.
Beyond the BG nuclei themselves, the catecholaminergic (CA) system—particularly dopamine (DA) and norepinephrine (NA)—plays a crucial role in language comprehension via the fronto-striatal pathway. Closely interconnected with the basal ganglia, this system not only modulates motor function but also supports higher-order cognitive processes, including multiple aspects of language. The role of CAs in semantic processing has gained considerable attention. Patients with BG dysfunctions often exhibit deficits in semantic, syntactic, and pragmatic processing. Recent pharmacological studies in healthy individuals have shown that CA stimulants (e.g., levodopa and methylphenidate) causally enhance the semantic and syntactic unification, even when language processing per se is goal-irrelevant. These findings demonstrate that higher CA levels may further amplify the importance of language processing through modulating fronto-striatal connectivity.
A central question in current research is whether the BG support language comprehension through mechanisms that are language-specific or domain-general mechanisms. The domain-general view, supported by evidence from neuroimaging, neuropsychological, and bilingual-switching studies, proposes that the BG—particularly the caudate nucleus and putamen—modulate cognitive control processes such as selection, monitoring, and resource allocation across both linguistic and non-linguistic tasks. In contrast, the language-specific view argues that certain BG-frontal circuits are specialized for language, with some neuropsychological and fMRI studies showing comprehension deficits or heightened fronto-striatal sensitivity in language tasks independent of general executive dysfunction. While current findings largely favor a domain-general regulatory role, the BG may exert finer-grained, potentially specialized control in specific linguistic domains, such as syntactic processing. Resolving this issue is critical for addressing a longstanding debate in psycholinguistics: whether language processing relies solely on shared neural resources or also engages dedicated neural mechanisms.
In summary, this review underscores the distinctive role of the BG in language comprehension, highlighting functional specializations among its nuclei. Several critical questions, however, remain unanswered. Future research should move beyond isolated activation patterns to systematically map the division of labor and coordination among BG nuclei, as well as their interactions with cortical language networks, using advanced techniques such as high-resolution diffusion imaging, laminar fMRI, intracranial recordings, and psychopharmacology. A central priority is to clarify whether BG regulatory functions are language-specific or domain-general by directly comparing linguistic and non-linguistic tasks with temporally precise (MEG/EEG) and spatially precise (ultra-high-field fMRI) measures. The catecholaminergic system—particularly dopamine and norepinephrine—also warrants focused investigation to disentangle their distinct and potentially non-linear contributions, integrating pharmacological, genetic, and MR spectroscopy approaches to assess neurotransmitter concentrations, receptor distributions, and connectivity effects. Finally, the role of neural plasticity, especially the bilingualism-induced structural and functional adaptations, should be incorporated into dynamic, developmentally informed models of BG-language interaction. These models should be supported by longitudinal, multimodal imaging to link language experience with functional network reorganization.

Key words

basal ganglia / language comprehension / catecholaminergic system / language-specific mechanisms

Cite this article

Download Citations
Tan Yingying, Zhang Ran, Ye Zheng, Zhou Xiaolin. The Role of Basal Ganglia in Language Comprehension[J]. Journal of Psychological Science. 2026, 49(1): 238-251 https://doi.org/10.16719/j.cnki.1671-6981.20260121

References

[1] Abrevaya S., Sedeño L., Fitipaldi S., Pineda D., Lopera F., Buritica O., Villegas A., Bustamante C., Gomez D., & Trujillo N. (2016). The road less traveled: Alternative pathways for action-verb processing in Parkinson' s disease. Journal of Alzheimer' s disease, 55(4), 1429-1435.
[2] Abutalebi, J., & Green. D.W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4), 689-698.
[3] Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231-239.
[4] Ali N., Green D. W., Kherif F., Devlin J. T., & Price. C. J. (2010). The role of the left head of caudate in suppressing irrelevant words. Journal of Cognitive Neuroscience, 22(10), 2369-2386.
[5] Andreou C., Veith K., Bozikas V. P., Lincoln T. M., & Moritz S. (2014). Effects of dopaminergic modulation on automatic semantic priming: A double-blind study. Journal of Psychiatry and Neuroscience, 39(2), 110-117.
[6] Angwin A. J., Chenery H. J., Copland D. A., Murdoch B. E., & Silburn P. A. (2007). The speed of lexical activation is altered in Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 29(1), 73-85.
[7] Bahlmann J., Schubotz R. I., & Friederici A. D. (2008). Hierarchical artificial grammar processing engages Broca's area. NeuroImage, 42(2), 525-534.
[8] Baraldi M. A., Avanzino L., Pelosin E., Domaneschi F., Di Paola S., & Lagravinese G. (2021). Pragmatic abilities in early Parkinson' s disease. Brain and Cognition, 150, 105706.
[9] Benke T., Hohenstein C., Poewe W., & Butterworth. B. (2000). Repetitive speech phenomena in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 69(3), 319-324.
[10] Bitan T., Burman D. B., Chou T., Lu D., Cone N. E., Cao F., Bigio J. D., & Booth J. R. (2007). The interaction between orthographic and phonological information in children: An fMRI study. Human Brain Mapping, 28(9), 880-891.
[11] Blank, I. A., & Fedorenko, E. (2017). Domain-general brain regions do not track linguistic input as closely as language-selective regions. Journal of Neuroscience, 37(41), 9999-10011.
[12] Bocanegra Y., García A. M., Pineda D., Buriticá O., Villegas A., Lopera F., Gómez D., Gómez-Arias C., Cardona J. F., & Trujillo N. (2015). Syntax, action verbs, action semantics, and object semantics in Parkinson's disease: Dissociability, progression, and executive influences. Cortex, 69, 237-254.
[13] Booth J. R., Wood L., Lu D., Houk J. C., & Bitan T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136-144.
[14] Brück C., Wildgruber D., Kreifelts B., Krüger R., & Wächter T. (2011). Effects of subthalamic nucleus stimulation on emotional prosody comprehension in Parkinson's disease. PloS ONE, 6(4), e19140.
[15] Burgaleta M., Sanjuán A., Ventura-Campos N., Sebastian-Galles N., & Ávila C. (2016). Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis. NeuroImage, 125, 437-445.
[16] Cai W., Young C. B., Yuan R., Lee B., Ryman S., Kim J., Yang L., Levine T. F., Henderson V. W., & Poston K. L. (2024). Subthalamic nucleus-language network connectivity predicts dopaminergic modulation of speech function in Parkinson' s disease. Proceedings of the National Academy of Sciences, 121(22), e2316149121.
[17] Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(1), 77-94.
[18] Camerino I., Ferreira J., Vonk J. M., Kessels R. P., de Leeuw F. E., Roelofs A., Copland D., & Piai V. (2024). Systematic review and meta-analyses of word production abilities in dysfunction of the basal ganglia: Stroke, small vessel disease, Parkinson' s disease, and Huntington' s disease. Neuropsychology Review, 34(1), 1-26.
[19] Chan S. H., Ryan L., & Bever T. G. (2013). Role of the striatum in language: Syntactic and conceptual sequencing. Brain and Language, 125(3), 283-294.
[20] Chahine L. M., Edison B., Daeschler M., Siddiqi B., Kopil C., Marras C., & Mantri S. (2021). Use of figurative language by people with Parkinson disease to describe “off” periods: Clear as mud. Neurology: Clinical Practice, 11(4), e462-e471.
[21] Cherodath S., Rao C., Midha R., Sumathi T., & Singh N. C. (2017). A role for putamen in phonological processing in children. Bilingualism: Language and Cognition, 20(2), 318-326.
[22] Cocquyt E. M., Coffé C., van Mierlo P., Duyck W., Mariën P., Szmalec A., Santens P., & De Letter M. (2019). The involvement of subcortical grey matter in verbal semantic comprehension: A systematic review and meta-analysis of fMRI and PET studies. Journal of Neurolinguistics, 51, 278-296.
[23] Colman K. S., Koerts J., Stowe L. A., Leenders K. L., & Bastiaanse R. (2011). Sentence comprehension and its association with executive functions in patients with Parkinson' s disease. Parkinson' s Disease, 2011(1), 213983.
[24] Cools, R., & Arnsten, A. F. (2022). Neuromodulation of prefrontal cortex cognitive function in primates: The powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 47(1), 309-328.
[25] Cools, R., & D'Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113-e125.
[26] Copland D. A., Brownsett S., Iyer K., & Angwin A. J. (2021). Corticostriatal regulation of language functions. Neuropsychology review, 31(3), 472-494.
[27] Copland D. A., Sefe G., Ashley J., Hudson C., & Chenery H. J. (2009). Impaired semantic inhibition during lexical ambiguity repetition in Parkinson's disease. Cortex, 45(8), 943-949.
[28] Crescentini C., Lunardelli A., Mussoni A., Zadini A., & Shallice T. (2008). A left basal ganglia case of dynamic aphasia or impairment of extra-language cognitive processes? Neurocase, 14(2), 184-203.
[29] De Letter M., Bruggeman A., De Keyser K., Van Mierlo P., Buysse H., Van Roost D., & Santens P. (2020). Subthalamic nucleus activity in the processing of body and mental action verbs in people with Parkinson' s disease. Brain and Language, 202, 104738.
[30] Desai R., Conant L. L., Waldron E., & Binder J. R. (2006). FMRI of past tense processing: The effects of phonological complexity and task difficulty. Journal of Cognitive Neuroscience, 18(2), 278-297.
[31] Dietrich S., Hertrich I., Seibold V. C., & Rolke B. (2019). Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study. NeuroImage, 202, 116047.
[32] Dominey, P. F., & Inui, T.(2009).Cortico-striatal function in sentence comprehension: Insights from neurophysiology and modeling. Cortex, 45(8), 1012-1018.
[33] Fedorenko, E. (2014). The role of domain-general cognitive control in language comprehension. Frontiers in Psychology, 5, 335.
[34] Fedorenko E., Duncan J., & Kanwisher N. (2012). Language-selective and domain-general regions lie side by side within Broca' s area. Current Biology, 22(21), 2059-2062.
[35] Fedorenko E., Ivanova A. A., & Regev T. I. (2024). The language network as a natural kind within the broader landscape of the human brain. Nature Reviews Neuroscience, 25(5), 289-312.
[36] Friederici A. D., Rüschemeyer S. A., Hahne A., & Fiebach C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170-177.
[37] Gallo F., Terekhina L., Shtyrov Y., & Myachykov A. (2024). Neuroplasticity and cognitive reserve effects in the Caudate Nucleus of young bilingual adults. Bilingualism: Language and Cognition, 27(1), 107-116.
[38] Giglio L., Ostarek M., Sharoh D., & Hagoort P. (2024). Diverging neural dynamics for syntactic structure building in naturalistic speaking and listening. Proceedings of the National Academy of Sciences, 121(11), e2310766121.
[39] Graybiel A. M., Aosaki T., Flaherty A. W., & Kimura M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826-1831.
[40] Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509-R511.
[41] Grossman M., Carvell S., Stern M. B., Gollomp S., & Hurtig H. I. (1992). Sentence comprehension in Parkinson' s disease: The role of attention and memory. Brain and Language, 42(4), 347-384.
[42] Grossman M., Glosser G., Kalmanson J., Morris J., Stern M. B., & Hurtig H. I. (2001). Dopamine supports sentence comprehension in Parkinson' s disease. Journal of the Neurological Sciences, 184(2), 123-130.
[43] Deep-Brain Stimulation for Parkinson's Disease Study Group, Obeso, J. A., Olanow C. W., Rodriguez-Oroz M. C., Krack P., Kumar R., & Lang A. E. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. New England Journal of Medicine, 345(13), 956-963.
[44] Hagoort, P., & Indefrey. P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37(1), 347-362.
[45] Hervais-Adelman A., Moser-Mercer B., Michel C. M., & Golestani N. (2015). fMRI of simultaneous interpretation reveals the neural basis of extreme language control. Cerebral Cortex, 25(12), 4727-4739.
[46] Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67-99.
[47] Holtgraves, T., & McNamara, P. (2010). Parkinson' s disease and politeness. Journal of Language and Social Psychology, 29(2), 178-193.
[48] Hosoda C., Hanakawa T., Nariai T., Ohno K., & Honda M. (2012). Neural mechanisms of language switch. Journal of Neurolinguistics, 25(1), 44-61.
[49] Hsu N. S., Kuchinsky S. E., & Novick J. M.(2021). Direct impact of cognitive control on sentence processing and comprehension. Language, Cognition and Neuroscience, 36(2), 211-239.
[50] Humphries S., Klooster N., Cardillo E., Weintraub D., Rick J., & Chatterjee A. (2019). From action to abstraction: The sensorimotor grounding of metaphor in Parkinson's disease. Cortex, 121, 362-384.
[51] Jacquemot, C., & Bachoud-Lévi, A. C. (2021). Striatum and language processing: Where do we stand? Cognition, 213, 104785.
[52] Johari K., Walenski M., Reifegerste J., Ashrafi F., Behroozmand R., Daemi M., & Ullman M. T. (2019). A dissociation between syntactic and lexical processing in Parkinson's disease. Journal of Neurolinguistics, 51, 221-235.
[53] Ketteler D., Kastrau F., Vohn R., & Huber W. (2008). The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; An fMRI study. NeuroImage, 39(4), 2002-2009.
[54] Ketteler S., Ketteler D., Vohn R., Kastrau F., Schulz J. B., Reetz K., & Huber W. (2014). The processing of lexical ambiguity in healthy ageing and Parkinson' s disease: Role of cortico-subcortical networks. Brain Research, 1581, 51-63.
[55] Kischka U., Kammer T., Maier S., Weisbrod M., Thimm M., & Spitzer M. (1996). Dopaminergic modulation of semantic network activation. Neuropsychologia, 34(11), 1107-1113.
[56] Klostermann F., Ehlen F., Vesper J., Nubel K., Gross M., Marzinzik F., Curio G., & Sappok T. (2008). Effects of subthalamic deep brain stimulation on dysarthrophonia in Parkinson' s disease. Journal of Neurology, Neurosurgery and Psychiatry, 79(5), 522-529.
[57] Korb F. M., Jiang J., King J. A., & Egner T. (2017). Hierarchically organized medial frontal cortex-basal ganglia loops selectively control task-and response-selection. Journal of Neuroscience, 37(33), 7893-7905.
[58] Kuperberg G. R., Sitnikova T., & Lakshmanan B. M. (2008). Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging. NeuroImage, 40(1), 367-388.
[59] Levinson S. C.(1983). Pragmatics. Cambridge University Press.
[60] Liu W., Wang C., He T., Su M., Lu Y., Zhang G., Münte T. F., Jin L., & Ye Z. (2021). Substantia nigra integrity correlates with sequential working memory in Parkinson's disease. Journal of Neuroscience, 41(29), 6304-6313.
[61] Longworth C. E., Keenan S. E., Barker R. A., Marslen-Wilson W. D., & Tyler L. K. (2005). The basal ganglia and rule-governed language use: Evidence from vascular and degenerative conditions. Brain, 128(3), 584-596.
[62] Ludlow C. L., Rosenberg J.,Salazar A., Grafman J., & Smutok M.(1987). Site of penetratingbrain lesions causing chronic acquired stuttering. Annals of Neurology, 22(1), 60-66.
[63] Manes J. L., Parkinson A. L., Larson C. R., Greenlee J. D., Eickhoff S. B., Corcos D. M., & Robin D. A. (2014). Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: A meta-analytic connectivity study. Human Brain Mapping, 35(7), 3499-3516.
[64] Manes J. L., Tjaden K., Parrish T., Simuni T., Roberts A., Greenlee J. D., Corcos D. M., & Kurani A. S. (2018). Altered resting-state functional connectivity of the putamen and internal globus pallidus is related to speech impairment in Parkinson' s disease. Brain and Behavior, 8(9), e01073.
[65] Mason, R. A., & Just, M. A. (2007). Lexical ambiguity in sentence comprehension. Brain Research, 1146, 115-127.
[66] McNamara, P., & Durso, R. (2018). The dopamine system, parkinson's disease and language function. Current Opinion in Behavioral Sciences, 21, 1-5.
[67] Mestres-Missé, Turner, & Friederici. (2012). An anterior-posterior gradient of cognitive control within the dorsomedial striatum. NeuroImage, 62(1), 41-47.
[68] Mestres-Missé A., Bazin P. L., Trampel R., Turner R., & Kotz S. A. (2014). Dorsomedial striatum involvement in regulating conflict between current and presumed outcomes. NeuroImage, 98, 159-167.
[69] Mestres-Missé A., Trampel R., Turner R., & Kotz S. A. (2017). Uncertainty and expectancy deviations require cortico-subcortical cooperation. NeuroImage, 144, 23-34.
[70] Meyer A. S., Huettig F., & Levelt W. J. (2016). Same, different, or closely related: What is the relationship between language production and comprehension? Journal of Memory and Language, 89, 1-7.
[71] Monetta L., Grindrod C. M., & Pell M. D. (2009). Irony comprehension and theory of mind deficits in patients with Parkinson's disease. Cortex, 45(8), 972-981.
[72] Montemurro S., Mondini S., Signorini M., Marchetto A., Bambini V., & Arcara G. (2019). Pragmatic language disorder in Parkinson' s disease and the potential effect of cognitive reserve. Frontiers in Psychology, 10, 1220.
[73] Moro-Velazquez L., Gomez-Garcia J. A., Arias-Londoño J. D., Dehak, N. & Godino-Llorente, J. I. (2021). Advances in Parkinson's disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomedical Signal Processing and Control, 66, 102418.
[74] Novakova L., Gajdos M., Markova J., Martinkovicova A., Kosutzka Z., Svantnerova J., Valkovic P., Csefalvay Z., & Rektorova I. (2023). Language impairment in Parkinson' s disease: fMRI study of sentence reading comprehension. Frontiers in Aging Neuroscience, 15, 1117473.
[75] Oberhuber M., Parker Jones Ō., Hope T. M., Prejawa S., Seghier M. L., Green D. W., & Price C. J. (2013). Functionally distinct contributions of the anterior and posterior putamen during sublexical and lexical reading. Frontiers Human Neuroscience, 7, 787.
[76] Péron J., Frühholz S., Ceravolo L., & Grandjean D. (2016). Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding. Social Cognitive and Affective Neuroscience, 11(2), 349-356.
[77] Péron J., Renaud O., Haegelen C., Tamarit L., Milesi V., Houvenaghel J. F., Dondaine T., Vérin M., Sauleau P., & Grandjean D. (2017). Vocal emotion decoding in the subthalamic nucleus: An intracranial ERP study in Parkinson' s disease. Brain and Language, 168, 1-11.
[78] Pigdon L., Willmott C., Reilly S., Conti-Ramsden G., Gaser C., Connelly A., & Morgan A. T. (2019). Grey matter volume in developmental speech and language disorder. Brain Structure and Function, 224, 3387-3398.
[79] Pliatsikas C., DeLuca V., Moschopoulou E., & Saddy J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 1785-1795.
[80] Rabini, G., Ubaldi, S. & Fairhall, S. L. (2023). Task-based activation and resting-state connectivity predict individual differences in semantic capacity for complex semantic knowledge. Communications Biology, 6(1), 1020.
[81] Roesch-Ely D., Weiland S., Scheffel H., Schwaninger M., Hundemer H. P., Kolter T., & Weisbrod M. (2006). Dopaminergic modulation of semantic priming in healthy volunteers. Biological Psychiatry, 60(6), 604-611.
[82] Sambin S., Teichmann M., de Diego Balaguer R., Giavazzi M., Sportiche D., Schlenker P., & Bachoud-Lévi A. C. (2012). The role of the striatum in sentence processing: Disentangling syntax from working memory in Huntington' s disease. Neuropsychologia, 50(11), 2625-2635.
[83] Seyfried, F., & Uddén, J. (2023). Phonotactics and syntax: Investigating functional specialisation during structured sequence processing. Language, Cognition and Neuroscience, 38(3), 346-358.
[84] Silveri, M. C. (2021). Contribution of the cerebellum and the basal ganglia to language production: Speech, word fluency, and sentence construction—evidence from pathology. The Cerebellum, 20(2), 282-294.
[85] Skeel R. L., Crosson B., Nadeau S. E., Algina J., Bauer R. M., & Fennell E. B. (2001). Basal ganglia dysfunction, working memory, and sentence comprehension in patients with Parkinson's disease. Neuropsychologia, 39(9), 962-971.
[86] Snijders T. M., Petersson K. M., & Hagoort P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52(4), 1633-1644.
[87] Snijders T. M., Vosse T., Kempen G., Van Berkum J. J., Petersson K. M., & Hagoort P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral Cortex, 19(7), 1493-1503.
[88] Stanc, L., Lunven, Giavazzi, Sliwinski, Youssov, Bachoud-Lévi, & Jacquemot. (2024). Cognitive reserve involves decision making and is associated with left parietal and hippocampal hypertrophy in neurodegeneration. Communications Biology, 7(1), 741.
[89] Sulpizio S., Del Maschio N., Del Mauro G., Fedeli D., & Abutalebi J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. NeuroImage, 205, 116306.
[90] Tan, Y., & Hagoort. P. (2020). Catecholaminergic modulation of semantic processing in sentence comprehension. Cerebral Cortex, 30(12), 6426-6443.
[91] Tan Y., Martin R. C., & Van Dyke, J. A.(2017). Semantic and syntactic.interference in sentence comprehension: A comparison of working memory models. Frontiers in Psychology. 8, 198.
[92] Tan L. H., Chen L., Yip V., Chan A. H., Yang J., Gao J. H., & Siok W. T. (2011). Activity levels in the left hemisphere caudate-fusiform circuit predict how well a second language will be learned. Proceedings of the National Academy of Sciences, 108(6), 2540-2544.
[93] Tao L., Wang G., Zhu M., & Cai Q. (2021). Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neuroscience and Biobehavioral Reviews, 125, 264-295.
[94] Teichmann M., Dupoux E., Kouider S., Brugières P., Boissé M. F., Baudic S., Cesaro P., Peschanski M., & Bachoud-Lévi A. C. (2005). The role of the striatum in rule application: The model of Huntington's disease at early stage. Brain, 128(5), 1155-1167.
[95] Teichmann M., Gaura V., Démonet J. F., Supiot F., Delliaux M., Verny C., Renou P., Remy P., & Bachoud-Lévi A. C. (2008). Language processing within the striatum: Evidence from a PET correlation study in Huntington's disease. Brain, 131(4), 1046-1056.
[96] Teichmann M., Rosso C., Martini J. B., Bloch I., Brugières P., Duffau H., Lehéricy S., & Bachoud-Lévi A. C. (2015). A cortical-subcortical syntax pathway linking Broca's area and the striatum. Human Brain Mapping, 36(6), 2270-2283.
[97] Thibault S., Py R., Gervasi A. M., Salemme R., Koun E., Lövden M., Boulenger V., Roy A. C., & Brozzoli C. (2021). Tool use and language share syntactic processes and neural patterns in the basal ganglia. Science, 374(6569), eabe0874.
[98] Tiedt H. O., Ehlen F., & Klostermann F. (2022). Dopamine-related reduction of semantic spreading activation in patients with Parkinson's disease. Frontiers in Human Neuroscience, 16, 837122.
[99] Tiedt H. O., Ehlen F., Krugel L. K., Horn A., Kühn A. A., & Klostermann F. (2017). Subcortical roles in lexical task processing: Inferences from thalamic and subthalamic event-related potentials. Human Brain Mapping, 38(1), 370-383.
[100] Tremblay C., Macoir J., Langlois M., Cantin L., Prud' homme M., & Monetta L. (2015). The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson' s disease. Brain and Language, 141, 103-109.
[101] Troyer A. K., Black S. E., Armilio M. L., & Moscovitch M. (2004). Cognitive and motor functioning in a patient with selective infarction of the left basal ganglia: Evidence for decreased non-routine response selection and performance. Neuropsychologia, 42(7), 902-911.
[102] Ullman, M. T. (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistic Research, 30, 37-69.
[103] Ullman M. T., Clark G. M., Pullman M. Y., Lovelett J. T., Pierpont E. I., Jiang X., & Turkeltaub P. E. (2024). The neuroanatomy of developmental language disorder: A systematic review and meta-analysis. Nature Human Behaviour, 8(5), 962-975.
[104] Ullman M. T., Earle F. S., Walenski M., & Janacsek K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71(1), 389-417.
[105] Unsworth, N., & Robison, M. K. (2017). A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychonomic Bulletin and Review, 24(4), 1282-1311.
[106] van Schouwenburg M. R., den Ouden H. E., & Cools R. (2015). Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cerebral Cortex, 25(6), 1527-1534.
[107] Viñas-Guasch, N., & Wu, Y. J. (2017). The role of the putamen in language: A meta-analytic connectivity modeling study. Brain Structure and Function, 222, 3991-4004.
[108] Vos S. H., Kessels R. P., Vinke R. S., Esselink R. A., & Piai V. (2021). The effect of deep brain stimulation of the subthalamic nucleus on language function in Parkinson's disease: A systematic review. Journal of Speech, Language, and Hearing Research, 64(7), 2794-2810.
[109] Wahl M., Marzinzik F., Friederici A. D., Hahne A., Kupsch A., Schneider G.-H., Saddy D., Curio G., & Klostermann F. (2008). The human thalamus processes syntactic and semantic language violations. Neuron, 59(5), 695-707.
[110] Wang Z., Yan X., Liu Y., Spray G. J., Deng Y., & Cao F. (2019). Structural and functional abnormality of the putamen in children with developmental dyslexia. Neuropsychologia, 130, 26-37.
[111] Wei, W., & Wang, X. J. (2016). Inhibitory control in the cortico-basal ganglia-thalamocortical loop: Complex regulation and interplay with memory and decision processes. Neuron, 92(5), 1093-1105.
[112] Wu, W., & Hoffman, P. (2024). Functional integration and segregation during semantic cognition: Evidence across age groups. Cortex, 178, 157-173.
[113] Ye, Z. (2022). Mapping neuromodulatory systems in Parkinson' s disease: Lessons learned beyond dopamine. Current Medicine, 1(1), 15.
[114] Ye Z., Milenkova M., Mohammadi B., Kollewe K., Schrader C., Dengler R., Samii A., & Münte T. F. (2012). Impaired comprehension of temporal connectives in Parkinson' s disease—A neuroimaging study. Neuropsychologia, 50(8), 1794-1800.
[115] Ye, Z., & Zhou, X. (2009). Conflict control during sentence comprehension: fMRI evidence. NeuroImage, 48(1), 280-290.
[116] Zhan J., Jiang X., Politzer-Ahles S., & Zhou X. (2017). Neural correlates of fine-grained meaning distinctions: An fMRI investigation of scalar quantifiers. Human Brain Mapping, 38(8), 3848-3864.
PDF(620 KB)

Accesses

Citation

Detail

Sections
Recommended

/