Journal of Psychological Science ›› 2022, Vol. 45 ›› Issue (3): 754-760.
Previous Articles Next Articles
Received:
2020-03-12
Revised:
2020-11-19
Online:
2022-05-20
Published:
2022-05-22
段海军1,王一凡1,王雪微1,2,韩炳淑1,2,赵汉璇1,2,阚越粹1,2,任维1
通讯作者:
任维
作者简介:
2021-10-01
基金资助:
段海军 王一凡 王雪微 韩炳淑 赵汉璇 阚越粹 任维. 应激影响创造力的神经生理机制[J]. 心理科学, 2022, 45(3): 754-760.
段海军, 王雪微, 王博韬, 王彤星, 张心如, 王子娟, 胡卫平. (2017). 急性应激:诱发范式、测量指标及效果比较, 心理科学进展, 25(10), 1770–1780. 罗跃嘉, 林婉君, 吴健辉, 秦绍正. (2013). 应激的认知神经科学研究.?生理科学进展,?44(5), 345–353. Aberg, K. C., Doell, K. C., & Schwartz, S. (2016). The “creative right brain” revisited: Individual creativity and associative priming in the right hemisphere relate to hemispheric asymmetries in reward brainfunction. Cerebral Cortex,?27(10), 4946–4959. Acar, S., Chen, X., & Cayirdag, N. (2018). Schizophrenia and creativity: A meta-analytic review.?Schizophrenia research,?195, 23–31. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex.?Annual review of neuroscience,?9(1), 357–381. Alexander,x J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress.?Journal of Cognitive Neuroscience,?19(3), 468–478. Ali, N., & Pruessner, J. C. (2012). The salivary alpha amylase over cortisol ratio as a marker to assess dysregulations of the stress systems.?Physiology & Behavior,?106(1), 65–72. Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview Press. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.?Annu. Rev. Neurosci.,?28, 403–450. Baer, M., & Oldham, G. R. (2006). The curvilinear relation between experienced creative time pressure and creativity: moderating effects of openness to experience and support for creativity. Journal of Applied Psychology, 91(4), 963. Barnes, C. D., & Pompeiano, O. (1991). Neurobiology of the locus coeruleus (Vol. 88): Elsevier. Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95. Beversdorf, D. Q. (2019). Neuropsychopharmacological regulation of performance on creativity-related tasks. Current opinion in behavioral sciences, 27, 55–63. Beversdorf, D. Q., Carpenter, A. L., Alexander, J. K., Jenkins, N. T., Tilley, M. R., White, C. A., ... & Gu, H. H. (2018). Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: an exploratory pilot study. Cognitive and behavioral neurology: official journal of the Society for Behavioral and Cognitive Neurology, 31(2), 79. Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport, 10(13), 2763–2767. Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13–23. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain research reviews, 42(1), 33–84. Byron, K., Khazanchi, S., & Nazarian, D. (2010). The relationship between stressors and creativity: A meta-analysis examining competing theoretical models. Journal of Applied Psychology, 95(1), 201–212. Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology Biochemistry and Behavior, 88(3), 222–229. Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature reviews endocrinology, 5(7), 374. Chuderski, A., & Jastrz?bski, J. (2018). Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability. Journal of Experimental Psychology: General, 147(2), 257. Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27(20), 5506–5514. De Dreu, C. K., Baas, M., & Nijstad, B. A. (2008). Hedonic tone and activation level in the mood-creativity link: toward a dual pathway to creativity model.?Journal of personality and social psychology,?94(5), 739. Duan, H., Wang, X., Hu, W., & Kounios, J. (2019). Effects of acute stress on divergent and convergent problem-solving. Thinking & Reasoning, 1–19. Duan, H., Wang, X., Wang, Z., Xue, W., Kan, Y., Hu, W., & Zhang, F. (2019). Acute Stress Shapes Creative Cognition in Trait Anxiety. Frontiers in Psychology, 10, 1517. Eisenberger, R., & Aselage, J. (2009). Incremental effects of reward on experienced performance pressure: Positive outcomes for intrinsic interest and creativity.?Journal of Organizational Behavior,?30(1), 95–117. Eysenck, H. J. (1995).?Genius: The natural history of creativity(Vol. 12). Cambridge University Press. Goldfarb, E. V., Frob?se, M. I., Cools, R., & Phelps, E. A. (2017). Stress and cognitive flexibility: Cortisol increases are associated with enhanced updating but impaired switching. Journal of Cognitive Neuroscience, 29(1), 14–24. Goldmanrakic, P. S. (1992). Dopamine-mediated mechanisms of the prefrontal cortex. Seminars in Neuroscience, 4(2), 149–159. Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9(5), 369–379. Henckens, M. J., van der Marel, K., van der Toorn, A., Pillai, A. G., Fernández, G., Dijkhuizen, R. M., & Jo?ls, M. (2015). Stress-induced alterations in large-scale functional networks of the rodent brain.?Neuroimage,?105, 312–322. Hermans, E. J., Henckens, M. J., Jo?ls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37(6), 304–314. Holly, E. N., & Miczek, K. A. (2016). Ventral tegmental area dopamine revisited: Effects of acute and repeated stress. Psychopharmacology, 233(2), 163–186. Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metabolic Brain Disease, 27(3), 267–274. Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20(2), 199–204. Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: dopamine and creativity.?Journal of neurology,?256(5), 816–819. Kuypers, K. P. C. (2018). Out of the box: A psychedelic model to study the creative mind.?Medical hypotheses,?115, 13–16. Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiological reviews, 71(1), 155–234. Lhommée, E., Batir, A., Quesada, J. L., Ardouin, C., Fraix, V., Seigneuret, E., ... & Krack, P. (2014). Dopamine and the biology of creativity: lessons from Parkinson’s disease.?Frontiers in neurology,?5, 55. Lin, H., & Vartanian, O. (2018). A neuroeconomic framework for creative cognition.?Perspectives on Psychological Science,?13(6), 655–677. Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20(3), 214–226. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.?Annual review of neuroscience,?24(1), 167-202. Müller, B. C., Gerasimova, A., & Ritter, S. M. (2016). Concentrative meditation influences creativity by increasing cognitive flexibility. Psychology of Aesthetics, Creativity& the Arts, 10(3), 278–286. Nair, N., Hegarty II, J. P., Ferguson, B. J., Hecht, P. M., Tilley, M., Christ, S. E., & Beversdorf, D. Q. (2020). Effects of stress on functional connectivity during problem solving.?NeuroImage,?208, 116407. Narayanan, A., White, C. A., Saklayen, S., Scaduto, M. J., Carpenter, A. L., Abduljalil, A., . . . Beversdorf, D. Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder—a pilot study. Brain imaging and behavior, 4(2), 189-197. Neri, D. F., Wiegmann, D., Stanny, R. R., Shappell, S. A., McCardie, A., & McKay, D. L. (1995). The effects of tyrosine on cognitive performance during extended wakefulness. Aviation, space, and environmental medicine. Nguyen, T. A., & Zeng, Y. (2012). A theoretical model of design creativity: Nonlinear design dynamics and mental stress-creativity relation. Journal of Integrated Design & Process Science, 16(3), 65–88. Nijstad, B. A., De Dreu, C. K., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21(1), 34–77. Pajkossy, P., Sz?ll?si, á., Demeter, G., & Racsmány, M. (2017). Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: Evidence from pupillometry and gaze pattern analysis. Psychophysiology, 54(7). Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis) inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134(134), 110–120. Rooij, A. D., Vromans, R. D., & Dekker, M. (2018). Noradrenergic Modulation of Creativity: Evidence from Pupillometry. Creativity Research Journal, 30(4), 339–351. Sacramento, C. A., Fay, D., & West, M. A. (2013). Workplace duties or opportunities? Challenge stressors, regulatory focus, and creativity. Organizational Behavior and Human Decision Processes, 121(2), 141–157. Schuler, A. L., Tik, M., Sladky, R., Luft, C. D. B., Hoffmann, A., Woletz, M., ... & Windischberger, C. (2019). Modulations in resting state networks of subcortical structures linked to creativity.?NeuroImage,?195, 311–319. Seo, Y. W., Chae, S. W., & Lee, K. C. (2015). The impact of absorptive capacity, exploration, and exploitation on individual creativity: Moderating effect of subjective well-being. Computers in Human Behavior, 42, 68–82. Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651–668. Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., ... & Poldrack, R. A. (2016). The dynamics of functional brain networks: integrated network states during cognitive task performance.?Neuron,?92(2), 544–554. Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage, 51(2), 578–585. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 55–61. Usher, M., Cohen, J. D., Servanschreiber, D., Rajkowski, J., & Astonjones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance.?Science,?283(5401), 549–554. Vartanian, O. (2009). Variable attention facilitates creative problem solving.?Psychology of Aesthetics Creativity & the Arts,?3(3), 57–59. Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory.?Nature neuroscience,?10(3), 376–384. Vogelsang, D. A., & D'Esposito, M. (2018). Is There Evidence for a Rostral-Caudal Gradient in Fronto-Striatal Loops and What Role Does Dopamine Play?.?Frontiers in neuroscience,?12, 242. Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The creative thinking cognitive process influenced by acute stress in humans: an electroencephalography study. Stress, 22(4), 472–481. Ward, R. T., Smith, S. L., Kraus, B. T., Allen, A. V., Moses, M. A., & Simon-Dack, S. L. (2018). Alpha band frequency differences between low-trait and high-trait anxious individuals. NeuroReport,?29(2), 79–83. Xin, Y., Wu, J., Yao, Z., Guan, Q., Aleman, A., & Luo, Y. (2017). The relationship between personality and the response to acute psychological stress.?Scientific Reports, 7(1). Yu, Q., Zhang, S., & Zhang, J. H. (2017). Association of Dopamine D2 Receptor Gene with Creative Ideation.?Creativity Research Journal,?29(2), 108–113. |
[1] | Yuan Huan, Li Nan. Inspiration or Fixation? Factors Influencing External Cue Effect on Creativity and the Cognitive Mechanism Underlying It [J]. Journal of Psychological Science, 2024, 47(5): 1096-1102. |
[2] | Peng Kaiqi, Li Zijun, Wang Rong. Abusive Supervision and Workplace Procrastination: The Chain Mediating Role of Shame and Stress Overload [J]. Journal of Psychological Science, 2024, 47(4): 863-870. |
[3] | Liu Yapeng, Deng Huihua, Liang Zongbao, Zhang Guangzhen. The Mediating Role of Harsh Parenting in the Association between Child Negative Emotionality and Behavioral Problems [J]. Journal of Psychological Science, 2024, 47(3): 598-605. |
[4] | Jiang Yutong, Li Hong, Meng Xianxin. “The Cost of Caring” : Evaluation and Intervention of Compassion Fatigue [J]. Journal of Psychological Science, 2024, 47(3): 752-759. |
[5] | Wu Jiaqi, Ren Xiao, Gong Zhe. Aggression and Malevolent Creativity: A Moderated Mediation Model [J]. Journal of Psychological Science, 2024, 47(2): 367-374. |
[6] | Pi Zhongling, Yang Yuan, Wang Peng, Li Xiying. When Science Meets Music: Whether Background Music can Promote Individuals’ Scientific Creativity? [J]. Journal of Psychological Science, 2024, 47(1): 121-131. |
[7] | Li Yan, Ju Jiawen, Liang Lichan, Bian Yufang. The Associations of Parenting Stress, Mindful Parenting and Parent-Child Relationship: An Actor-Partner Interdependence Model [J]. Journal of Psychological Science, 2023, 46(6): 1432-1439. |
[8] | Han Shu, Chen Yaqin, Zheng Benhuiyuan, Wang Yaxin, Yin Bin. An Empirical Study on The Motivation of Helping Behavior in Rodents [J]. Journal of Psychological Science, 2023, 46(5): 1036-1045. |
[9] | Zhao Jianbin. The Influence of Luck Perception on Consumer Creativity:The Mediating Role of Creative Self-Efficacy [J]. Journal of Psychological Science, 2023, 46(5): 1173-1179. |
[10] | Liu Sihan, Wu Xinchun, Wang Xinyi, Ying Jiefeng. The Association between Parenting Stress and Parental Involvement: Do Partner's Coparenting Behaviors Matter? [J]. Journal of Psychological Science, 2023, 46(4): 857-864. |
[11] | Tong Luqiong, Zhu Rui. The Influence of Ambient Temperature on Consumer Creativity [J]. Journal of Psychological Science, 2023, 46(4): 905-912. |
[12] | Wang Miaomiao, Zhang Jie, Hu Wenan, Nie Qi. The Double-Edge Sword Effects of Ambidextrous Leadership on Employee' s Work Engagement: The Moderating Role of Power Distance [J]. Journal of Psychological Science, 2023, 46(4): 921-928. |
[13] | Shen Chengchun , Hu bohua , He Qinghua . The effect of stress on decision-making under ambiguity: cognitive and neural mechanisms [J]. Journal of Psychological Science, 2023, 46(2): 500-508. |
[14] | Li Wenhui, Jiang Feng. The Impact of Academic Performance on Academic Self-efficacy of Primary School Students: The Mediating Role of Academic Stress and Self-esteem and Its Gender Differences [J]. Journal of Psychological Science, 2023, 46(2): 347-354. |
[15] | 张 瑶瑶 Hong Yuan Yan-Ling LIU. Effect of Mindfulness on Stress - Based on Monitoring and Acceptance Theory [J]. Journal of Psychological Science, 2022, 45(6): 1492-1499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||