[1] 巴甫洛夫. (1956). 高级神经活动研究论文集. 上海卫生出版社. [2] 代小东, 于红军, 丁锦红. (2015). 气质与眼动控制的关系. 心理科学, 38(3), 666-671. [3] 付全. (2011). 我国优秀击剑运动员神经活动特性的研究. 北京体育大学学报, 34(2), 68-70. [4] 郭秀文, 魏复活. (2008). 艺术体操运动员的气质类型与选材. 西北师范大学学报(自然科学版), 44(6), 107-109. [5] 李政. (2019). 不同神经类型的篮球运动员应激反应特征研究 (硕士学位论文). 山东师范大学, 济南. [6] 陆周琳. (2016). 知觉速度、工作记忆和神经类型的潜变量研究 (硕士学位论文). 苏州大学. [7] 彭聃龄. (2019). 普通心理学. 北京师范大学出版社. [8] 史新广. (2020). 神经类型与执行功能的关系. 心理科学, 43(4), 801-807. [9] 孙伟. (2016). 中央执行功能、流体智力与神经类型的关系研究 (硕士学位论文). 苏州大学. [10] 王林, 刘江南. (1996). 短跑步频与肌纤维神经类型之间的关系. 广州体育学院学报, 16(2), 33-39, 5. [11] 肖熙然. (2009). 不同竞赛角色篮球运动员的大脑机能能力及其特性. 上海体育学院学报, 33(6), 54-57. [12] 张卿华, 王文英. (1993). 人的神经类型测评研究. 高等教育出版社. [13] 张卿华, 王文英. (2017). 人的神经类型研究. 苏州大学出版社. [14] Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. [15] Brehmer Y., Rieckmann A., Bellander M., Westerberg H., Fischer H., & Bäckman L. (2011). Neural correlates of training-related working-memory gains in old age. NeuroImage, 58(4), 1110-1120. [16] Brouwer A. M., Hogervorst M. A., van Erp, J. B. F., Heffelaar T., Zimmerman P. H., & Oostenveld R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of Neural Engineering, 9(4), Article 045008. [17] Covey T. J., Shucard J. L., & Shucard D. W. (2017). Event-related brain potential indices of cognitive function and brain resource reallocation during working memory in patients with Multiple Sclerosis. Clinical Neurophysiology, 128(4), 604-621. [18] Covey T. J., Shucard J. L., & Shucard D. W. (2019). Working memory training and perceptual discrimination training impact overlapping and distinct neurocognitive processes: Evidence from event-related potentials and transfer of training gains. Cognition, 182, 50-72. [19] Dong S. S., Reder L. M., Yao Y., Liu Y. Q., & Chen F. Y. (2015). Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Research, 1616, 146-156. [20] Huang Z. B., Wang H., Rao X. R., Zhong G. F., Hu W. H., & Sheng G. Q. (2011). Different effects of scopolamine on the retrieval of spatial memory and fear memory. Behavioural Brain Research, 221(2), 604-609. [21] Kiyonaga, A., & Egner, T. (2015). Working memory representations produce inhibition of similar (but not identical) stimuli in visual attention. Journal of Vision, 15(12), Article 544. [22] Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577. [23] Kramer A. F., Strayer D. L., & Buckley J. (1991). Task versus component consistency in the development of automatic processing: A psychophysiological assessment. Psychophysiology, 28(4), 425-437. [24] Lenartowicz A., Escobedo-Quiroz R., & Cohen. J. D. (2010). Updating of context in working memory: An event-related potential study. Cognitive, Affective, and Behavioral Neuroscience, 10(2), 298-315. [25] McEvoy L. K., Smith M. E., & Gevins A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8(7), 563-574. [26] Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex 'frontal lobe' tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. [27] Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. [28] Salmi J., Vilà-Balló A., Soveri A., Rostan C., Rodríguez-Fornells A., Lehtonen M., & Laine M. (2019). Working memory updating training modulates a cascade of event-related potentials depending on task load. Neurobiology of Learning and Memory, 166, Article 107085. [29] Shiran, A., & Breznitz, Z. (2011). The effect of cognitive training on recall range and speed of information processing in the working memory of dyslexic and skilled readers. Journal of Neurolinguistics, 24(5), 524-537. [30] Watter S., Geffen G. M., & Geffen L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(6), 998-1003. |