Neural Mechanism of Emotion Regulation of Social Pain

Mo Licheng, Li Sijin, Zhang Dandan

Journal of Psychological Science ›› 2024, Vol. 47 ›› Issue (3) : 530-537.

PDF(326 KB)
PDF(326 KB)
Journal of Psychological Science ›› 2024, Vol. 47 ›› Issue (3) : 530-537. DOI: 10.16719/j.cnki.1671-6981.20240303
General Psychology,Experimental Psychology & Ergonomics

Neural Mechanism of Emotion Regulation of Social Pain

  • Mo Licheng, Li Sijin, Zhang Dandan
Author information +
History +

Abstract

Human beings are “social animals”. Social relationships play a vital role in one’s survival and development. Individuals with destroyed social relationships often describe themselves feel like “heartbroken” or “heartache”. This negative "pain" experience caused by the breakdown of social relationships is called social pain. Social pain affects individuals’ basic survival needs, including senses of belonging, control, and meaningful existence. Studies have found that over-sensitive to social pain is related to various mental disorders. Due to the severe impacts caused by social pain, it is urgent to uncover the neural mechanism of social pain and how to deal with it.
Neuroimaging studies usually used the cyberball paradigm to evoke social pain in the lab, which have found that anterior cingulate cortex (ACC), especially its dorsal part (dorsal ACC, dACC) and anterior insula (AI) are key brain regions for pain perception and emotion experience. Emotion regulation is an important way to effectively alleviate the painful feelings and negative experience evoked by social pain. However, compared with the neural mechanism of social pain experience, we have limited knowledge about the neural mechanism of emotion regulation of social pain. Uncovering the latter will help to deepen our understanding of emotion regulation and potentially contribute to the development of interventions for social pain relief in clinics.
Literatures focusing on emotion regulation in general have demonstrated that people use various strategies to regulate negative emotions; among which distraction and cognitive reappraisal are the most frequently used methods. Neuroimaging studies have found that the prefrontal cortex (PFC) is the key brain region for emotion regulation. Compared with healthy individuals, patients with emotional disorders show abnormal response in brain areas associated with emotion regulation. Furthermore, recent findings indicate that PFC regions, especially its lateral part (including ventrolateral and dorsolateral PFC, vlPFC, and dlPFC) are crucial for emotion regulation of social pain and non-social pain/negative emotions. In addition to PFC regions, emotion regulation of social pain also recruits the social cognitive brain network, including posterior superior temporal sulcus, temporal-parietal junction activity, inferior parietal lobe, and posterior cingulate cortex. Using non-invasive brain stimulation (e.g., transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)) to enhance the neural activation of the vlPFC and dlPFC could effectively alleviate social pain. Interestingly, the vlPFC and dlPFC have been found show functional specificity for reappraisal and distraction.
Future studies are suggested to further investigate the following questions. First, it is urgent to clarify the key brain regions involved in emotion regulation of social pain. Secondly, it is necessary to combine brain imaging with brain modulation techniques, together with patient data to uncover dynamic causal model of brain networks underlying emotion regulation of social pain. Third, neuromodulation or neurofeedback techniques can be used in clinics to help relieve social pain and restore social functions of patients.

Key words

social pain / emotion regulation / ventrolateral prefrontal cortex / dorsolateral prefrontal cortex

Cite this article

Download Citations
Mo Licheng, Li Sijin, Zhang Dandan. Neural Mechanism of Emotion Regulation of Social Pain[J]. Journal of Psychological Science. 2024, 47(3): 530-537 https://doi.org/10.16719/j.cnki.1671-6981.20240303

References

[1] 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. (2021). 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力: 一项TMS研究.心理学报, 53(5), 494-504.
[2] Abend R., Sar-El R., Gonen T., Jalon I., Vaisvaser S., Bar-Haim Y., & Hendler T. (2019). Modulating emotional experience using electrical stimulation of the medial-prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation, 22(8), 884-893.
[3] Blakemore S. J. (2008). The social brain in adolescence. Nature Reviews. Neuroscience, 9(4), 267-277.
[4] Braunstein L. M., Gross J. J., & Ochsner K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive and Affective Neuroscience, 12(10), 1545-1557.
[5] Buhle J. T., Silvers J. A., Wager T. D., Lopez R., Onyemekwu C., Kober H., & Ochsner K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981-2990.
[6] Cristofori I., Moretti L., Harquel S., Posada A., Deiana G., Isnard J., & Sirigu A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437-2447.
[7] Dixon M. L., Moodie C. A., Goldin P. R., Farb N., Heimberg R. G., & Gross J. J. (2020). Emotion regulation in social anxiety disorder: reappraisal and acceptance of negative self-beliefs. Biological Psychiatry, 5(1), 119-129.
[8] Dixon M. L., Thiruchselvam R., Todd R., & Christoff K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143(10), 1033-1081.
[9] Dörfel D., Lamke J. P., Hummel F., Wagner U., Erk S., & Walter H. (2014). Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: A comparative fMRI investigation. NeuroImage, 101, 298-309.
[10] Dryman, M. T., & Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clinical Psychology Review, 65, 17-42.
[11] Durodié, B., & Wainwright, D. (2019). Terrorism and post-traumatic stress disorder: a historical review. The Lancet Psychiatry, 6, 61-71.
[12] Eisenberger, N. I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical and social pain. Nature Reviews Neuroscience, 13(6), 421-434.
[13] Eisenberger, N. I. (2015). Social pain and the brain: Controversies, questions, and where to go from here. Annual Review of Psychology, 66, 601-629.
[14] Eisenberger N. I., Inagaki T. K., Muscatell K. A., Byrne Haltom K. E., & Leary M. R. (2011). The neural sociometer: brain mechanisms underlying state self-esteem. Journal of Cognitive Neuroscience, 23(11), 3448-3455.
[15] Eisenberger N. I., Lieberman M. D., & Williams K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290-292.
[16] Elliott R., Lythe K., Lee R., McKie S., Juhasz G., Thomas E. J., Downey D., Deakin J. F., & Anderson I. M. (2012). Reduced medial prefrontal responses to social interaction images in remitted depression. Archives of General Psychiatry, 69(1), 37-45.
[17] Etkin A., Büchel C., & Gross J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693-700.
[18] Fitzgerald J. M., Kinney K. L., Phan K. L., & Klumpp H. (2020). Distinct neural engagement during implicit and explicit regulation of negative stimuli. Neuropsychologia, 145, 106675.
[19] Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271-299.
[20] Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26(1), 1-26.
[21] Gyurak A., Gross J. J., & Etkin A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25(3), 400-412.
[22] He Z., Lin Y., Xia L., Liu Z., Zhang D., & Elliott R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357-366.
[23] He Z., Liu Z., Zhao J., Elliott R., & Zhang D. (2020a). Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychological Medicine, 16, 1-12
[24] He Z., Zhao J., Shen J., Muhlert N., Elliott R., & Zhang D. (2020b). The right VLPFC and downregulation of social pain: A TMS study. Human Brain Mapping, 41(5), 1362-1371.
[25] Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and Psychopathology. Biological Psychiatry, 83(8), 638-647.
[26] Hsu D, Yttredahl A and Sankar A (2018). Neuroimaging evidence for targeting abnormal responses to the social environment in major depressive disorder. Biological Psychiatry, 83(9), S27.
[27] Hsu D. T., Sanford B. J., Meyers K. K., Love T. M., Hazlett K. E., Walker S. J., & Zubieta J. K. (2015). It still hurts: Altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Molecular Psychiatry, 20(2), 193-200
[28] Jankowski K. F., Batres J., Scott H., Smyda G., Pfeifer J. H., & Quevedo K. (2018). Feeling left out: Depressed adolescents may atypically recruit emotional salience and regulation networks during social exclusion. Social Cognitive and Affective Neuroscience, 13(8), 863-876.
[29] Koban L., Kross E., Woo C. W., Ruzic L., & Wager T. D. (2017). Frontal-brainstem pathways mediating placebo effects on social rejection. The Journal of Neuroscience, 37(13), 3621-3631.
[30] Kohn N., Eickhoff S. B., Scheller M., Laird A. R., Fox P. T., & Habel U. (2014). Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345-355.
[31] Kross E., Egner T., Ochsner K., Hirsch J., & Downey G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945-956.
[32] Liu Y., Huang H., McGinnis-Deweese M., Keil A., & Ding M. (2012). Neural substrate of the late positive potential in emotional processing. The Journal of Neuroscience, 32(42), 14563-14572.
[33] McRae, K., & Gross, J. J. (2020). Emotion regulation. Emotion, 20(1), 1-9.
[34] Morawetz C., Bode S., Derntl B., & Heekeren H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 72, 111-128.
[35] Morawetz C., Riedel M. C., Salo T., Berboth S., Eickhoff S. B., Laird A. R., & Kohn N. (2020). Multiple large-scale neural networks underlying emotion regulation. Neuroscience and Biobehavioral Reviews, 116, 382-395.
[36] Morese R., Lamm C., Bosco F. M., Valentini M. C., & Silani G. (2019). Social support modulates the neural correlates underlying social exclusion. Social Cognitive and Affective Neuroscience, 14(6), 633-643.
[37] Nishiyama Y., Okamoto Y., Kunisato Y., Okada G., Yoshimura S., Kanai Y., & Yamawaki S. (2015). fMRI study of social anxiety during social ostracism with and without emotional support. PLos One. 10, e0127426.
[38] Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242-249.
[39] Ochsner K. N., Silvers J. A., & Buhle J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1-E24.
[40] Onoda K., Okamoto Y., Nakashima K., Nittono H., Yoshimura S., Yamawaki S., & Ura M. (2010). Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism. Social Cognitive and Affective Neuroscience, 5(4), 385-391.
[41] Otten, M., & Jonas, K. J. (2013). Out of the group, out of control? The brain responds to social exclusion with changes in cognitive control. Social Cognitive and Affective Neuroscience, 8(7), 789-794.
[42] Picó-Pérez M., Radua J., Steward T., Menchón J. M., & Soriano-Mas C. (2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 96-104.
[43] Rabinak C. A., MacNamara A., Kennedy A. E., Angstadt M., Stein M. B., Liberzon I., & Phan K. L. (2014). Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depression and Anxiety, 31(10), 851-861.
[44] Richman, L. S., & Leary, M. R. (2009). Reactions to discrimination, stigmatization, ostracism, and other forms of interpersonal rejection: A multimotive model. Psychological Review, 116(2), 365-383.
[45] Riva P., Lauro L. J. R., DeWall C. N., Chester D. S., & Bushman B. J. (2015a). Reducing Aggressive responses to social exclusion using transcranial direct current stimulation. Social Cognitive and Affective Neuroscience, 10, 352-356.
[46] Riva P., Lauro L. J. R., Vergallito A., Dewall C. N., & Bushman B. J. (2015b). Electrified emotions: Modulatory effects of transcranial direct stimulation on negative emotional reactions to social exclusion. Social Neuroscience, 10(1), 46-54.
[47] Riva P., Romero Lauro L. J., DeWall C. N., & Bushman B. J. (2012). Buffer the pain away: Stimulating the right ventrolateral prefrontal cortex reduces pain following social exclusion. Psychology Science. 23(12), 1473-1475.
[48] Rive M. M., Van Rooijen G., Veltman D. J., Mary M. L., Schene A. H., & Ruhé H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(10), 2529-2553.
[49] Rotge J. Y., Lemogne C., Hinfray S., Huguet P., Grynszpan O., Tartour E., & Fossati P. (2015). A meta-analysis of the anterior cingulate contribution to social pain. Social Cognitive and Affective Neuroscience, 10(1), 19-27.
[50] Roy M., Shohamy D., & Wager T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147-56.
[51] Vijayakumar N., Cheng T. W., & Pfeifer J. H. (2017). Neural correlates of social exclusion across ages: A coordinate-based meta-analysis of functional MRI studies. NeuroImage, 153(2), 359-368.
[52] Vrtička P., Sander D., & Vuilleumier P. (2011). Effects of emotion regulation strategy on brain responses to the valence and social content of visual scenes. Neuropsychologia, 49(5), 1067-1082.
[53] Wager, T. D., & Atlas, L.Y. (2015). The neuroscience of placebo effects: Connecting context, learning and health. Nature Reviews Neuroscience, 16, 403-18.
[54] Wager T. D., Davidson M. L., Hughes B. L., Lindquist M. A., & Ochsner K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037-1050.
[55] Wang H., Braun C., & Enck P. (2017). How the brain reacts to social stress (exclusion) - A scoping review. Neuroscience and Biobehavioral Reviews, 80(8), 80-88.
[56] Wang X., Feng Z., Zhou D., Lei X., Liao T., Zhang L., & Li J. (2014). Dissociable self -effects for emotion regulation: A study of Chinese major depressive outpatients. BioMed Research International, 390865.
[57] Yanagisawa K., Masui K., Furutani K., Nomura M., Ura M., & Yoshida H. (2011). Does higher general trust serve as a psychosocial buffer against social pain? An NIRS study of social exclusion. Social Neuroscience, 6(2), 190-197.
[58] Yttredahl A. A., McRobert E., Sheler B., Mickey B. J., Love T. M., Langenecker S. A., Zubieta J. K., & Hsu D. T. (2018). Abnormal emotional and neural responses to romantic rejection and acceptance in depressed women. Journal of Affective Disorders, 234, 231-238.
[59] Zhao J., Mo L., Bi R., He Z., Chen Y., Xu F., Xie H., & Zhang D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. The Journal of Neuroscience, 41(6), 1331-1339.
[60] Zilverstand A., Parvaz M. A., & Goldstein R. Z. (2017). Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. NeuroImage, 151, 105-116.
PDF(326 KB)

Accesses

Citation

Detail

Sections
Recommended

/