Psychological Science ›› 2016, Vol. 39 ›› Issue (5): 1256-1267.

Previous Articles     Next Articles

  

  • Received:2016-10-12 Revised:2016-07-05 Online:2016-09-20 Published:2016-09-20

当结构假设和分布假设不满足时的验证性因子分析:稳健极大似然法估计和贝叶斯估计的比较研究

梁莘娅1,杨艳云2   

  1. 1. 美国阿肯色大学
    2. 佛罗里达州立大学
  • 通讯作者: 杨艳云

Abstract:

In empirical analyses, structural equation models are often misspecified and the distributional assumption underlying normal-theorybased
estimators is routinely violated. This study investigated two alternative methods to the maximum likelihood estimation method in the context of
confirmatory factor analysis: robust maximum likelihood and Bayesian estimation with noninformative priors. A simulation study was conducted to
compare the performance of these two estimation methods when the model is misspecified and data do not follow multivariate normal distributions.
The design factors included factor structures, distributions of item scores, and sample sizes. The performance of these two methods was evaluated
based on model rejection rates, parameter estimates, and standard errors associated with parameter estimates. Results indicated that up to 21.45% of
replications encountered inadmissible solutions when models were analyzed using robust maximum likelihood estimation methods, whereas all models
converged to proper solutions when Bayesian estimation with noninformative priors were applied. Bayesian estimation yielded high power for detecting
model misspecification when data present nonnormality. However, caution should be made when using Bayesian estimation with non-informative
priors for data with small sample sizes and following normal distributions.

摘要:

结构方程模型已被广泛应用于心理学、教育学、以及社会科学领域的统计分析中。结构方程模型分析中最常用的估计方法是基于正
态分布的估计量,比如极大似然估计法。这些方法需要满足两个假设。第一, 理论模型必须正确地反映变量与变量之间的关系,称为结构假
设。第二,数据必须符合多元正态分布,称为分布假设。如果这些假设不满足,基于正态分布的估计量就有可能导致不正确的卡方指数、不
正确的拟合度、以及有偏差的参数估计和参数估计的标准误。在实际应用中,几乎所有的理论模型都不能准确地解释变量与变量之间的关系,
数据也常常呈非多元正态分布。为此,一些新的估计方法得以发展。这些方法要么在理论上不要求数据呈多元正态分布,要么对因数据呈非
正态分布而导致的不正确结果进行纠正。当前较为流行的两种方法是稳健极大似然估计和贝叶斯估计。稳健极大似然估计是应用 Satorra and
Bentler (1994) 的方法对不正确的卡方指数和参数估计的标准误进行调整,而参数估计和用极大似然方法得出的完全等同。贝叶斯估计方法则是
基于贝叶斯定理,其要点是:参数的后验分布是由参数的先验分布和数据似然值相乘而得来。后验分布常用马尔科夫蒙特卡洛算法来进行模拟。
对于稳健极大似然估计和贝叶斯估计这两种方法之间的优劣比较,先前的研究只局限于理论模型是正确的情境。而本研究则着重于理论模型
是错误的情境,同时也考虑到数据呈非正态分布的情境。本研究所采用的模型是验证性因子模型,数据全部由计算机模拟而来。数据的生成
取决于三个因素:8 类因子结构,3 种变量分布,和3 组样本量。这三个因素产生72 个模拟条件(72=8x3x3)。每个模拟条件下生成2000 个
数据组,每个数据组都拟合两个模型,一个是正确模型、一个是错误模型。每个模型都用两种估计方法来拟合:稳健极大似然估计法和贝叶
斯估计方法。贝叶斯估计方法中所使用的先验分布是无信息先验分布。结果分析主要着重于模型拒绝率、拟合度、参数估计、和参数估计的
标准误。研究的结果表明:在样本量充足的情况下,两种方法得出的参数估计非常相似。当数据呈非正态分布时,贝叶斯估计法比稳健极大
似然估计法更好地拒绝错误模型。但是,当样本量不足且数据呈正态分布时,贝叶斯估计在拒绝错误模型和参数估计上几乎没有优势,甚至
在一些条件下,比稳健极大似然法要差。