[1] 陈春宇, 连帅磊, 孙晓军, 柴唤友, 周宗奎. (2018). 社交网站成瘾与青少年抑郁的关系:认知负载和核心自我评价的中介作用. 心理发展与教育, 34(2), 210-218. [2] 姜永志, 白晓丽, 阿拉坦巴根, 刘勇, 刘敏, 李桂芹. (2016). 青少年问题性社交网络使用.心理科学进展, 24(9), 1435-1447. [3] 刘洪志, 魏子晗, 盈嘉, 贺祉秋, 李东启. (2022). 因果与权重:决策的眼动模型. 心理科学, 45(1), 242-249. [4] 孙俊才,石荣. (2017). 哭泣表情面孔的注意偏向:眼动的证据. 心理学报, 49(2), 155-163. [5] 闫国利, 熊建萍, 臧传丽, 余莉莉, 崔磊, 白学军. (2013). 阅读研究中的主要眼动指标评述. 心理科学进展 21(4), 589-605. [6] Andreassen C. S., Billieux J., Griffiths M. D., Kuss D. J., Demetrovics Z., Mazzoni E., & Pallesen S. (2016). The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30(2), 252-262. [7] Ashby N. J., Jekel M., Dickert S., & Glöckner A. (2016). Finding the right fit: A comparison of process assumptions underlying popular drift-diffusion models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(12), 1982. [8] Blankenstein N. E., Crone E. A., van den Bos W., & van Duijvenvoorde, A. C. (2016). Dealing with uncertainty: Testing risk- and ambiguity-attitude across adolescence. Develoopmental Neuropsychology, 41(1-2), 77-92. [9] Brand M., Wegmann E., Stark R., Muller A., Wolfling K., Robbins T. W., & Potenza M. N. (2019). The interaction of person-affect-cognition-execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience and Biobehavioral Reviews, 104, 1-10. [10] Brand M., Muller A., Stark R., Steins-Loeber S., Klucken T., Montag C., Diers M., Wolf O. T., Rumpf H. J., Wolfling K., & Wegmann E. (2021,). Addiction Research Unit: Affective and cognitive mechanisms of specific Internet-use disorders. Addictions Biology, 26(6), e13087. [11] Brand M., Young K. S., Laier C., Wolfling K., & Potenza M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An interaction of person-affect-cognition-execution (I-PACE) model. Neuroscience and Biobehavioral Reviews, 71, 252-266. [12] Chen H., Strong C., Lin Y. C., Tsai M. C., Leung H., Lin C. Y., G A. H. P., & Griffiths M. D. (2019). Time invariance of three ultra-brief internet-related instruments: Smartphone application-based addiction scale (SABAS), Bergen social media addiction scale (BSMAS), and the nine-item internet gaming disorder scale- short form (IGDS-SF9) (Study Part B) - ScienceDirect. Addictive Behaviors, 101. [13] Chen S., Yang P., Chen T., Su H., Jiang H., & Zhao M. (2020). Risky decision-making in individuals with substance use disorder: A meta-analysis and meta-regression review. Psychopharmacology (Berl), 237(7), 1893-1908. [14] Fisher, G. (2017). An attentional drift diffusion model over binary-attribute choice. Cognition, 168, 34-45. [15] Gluth S., Kern N., Kortmann M., & Vitali C. L. (2020). Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nature Human Behaviour. 4(6), 634-645. [16] Hoven M., Hirmas A., Engelmann J., & van Holst, R. J. (2023). The role of attention in decision-making under risk in gambling disorder: An eye-tracking study. Addiction Behaviour, 138, 107550. [17] Ioannidis K., Hook R., Goudriaan A. E., Vlies S., Fineberg N. A., Grant J. E., & Chamberlain S. R. (2019). Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. British Journal Psychiatry, 215(5), 639-646. [18] Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68. [19] Khoury J. M., Couto L., Santos D. A., VHO E. S., Drumond J. P. S., Silva L., Malloy-Diniz L., Albuquerque M. R., das Neves, M. C. L., & Duarte Garcia F. (2019). Bad choices make good stories: The impaired decision-making process and skin conductance response in subjects with Smartphone Addiction. Frontiers in Psychiatry, 10, 73. [20] Koc, M., & Gulyagci, S. (2013). Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. Cyberpsychology Behavior and Social Networking, 16(4), 279-284. [21] Kriegler J., Wegener S., Richter F., Scherbaum N., & Wegmann E. (2019). Decision making of individuals with heroin addiction receiving opioid maintenance treatment compared to early abstinent users. Drug and Alcohol Dependence, 205, 107593. [22] Lee D., Lee J., Namkoong K., & Jung Y. C. (2021). Altered functional connectivity of the dorsal attention network among problematic social network users. Addiction Behavior, 116, 106823. [23] Lescher M., Wegmann E., Müller S. M., Laskowski N. M., & Müller A. (2020). A randomized study of food pictures-influenced decision-making under ambiguity in individuals with Morbid Obesity. Frontiers in Psychiatry, 11, 822. [24] Meshi D., Elizarova A., Bender A., & Verdejo-Garcia A. (2019). Excessive social media users demonstrate impaired decision making in the Iowa Gambling Task. Journal of Behavioral Addictions, 8(1), 169-173. [25] Meshi D., Freestone D., & Ozdem-Mertens C. (2021). Problematic social media use is associated with the evaluation of both risk and ambiguity during decision making. Journal of Behavioral Addictions, 10(3), 779-787. [26] Meshi D., Tamir D. I., & Heekeren H. R. (2015). The emerging neuroscience of social media. Trends in Cognitive Sciences, 19(12), 771-782. [27] Meshi D., Ulusoy E., Ozdem-Mertens C., Grady S. M., Freestone D. M., Eden A., & Ellithorpe M. E. (2020). Problematic social media use is associated with increased risk-aversion after negative outcomes in the balloon analogue risk task. Psychology of Addictive Behaviors, 34(4), 549-555. [28] Müller S. M., Liebherr M., Wegmann E., & Brand M. (2022). Decision making - a neuropsychological perspective. In Encyclopedia of behavioral neuroscience (pp. 396-403). Springer Berlin Heidelberg. [29] Muller S. M., Wegmann E., Garcia Arias M., Bernabeu Brotons E., Marchena Giraldez C., & Brand M. (2021). Deficits in executive functions but not in decision making under risk in individuals with problematic social-network use. Comprehensive Psychiatry, 106, 152228. [30] Muller S. M., Wegmann E., Garcia Arias M., Bernabeu Brotons E., Marchena Giraldez C., & Brand M. (2022). Decision making and risk propensity in individuals with tendencies towards specific internet-use disorders. Brain Sciences, 12(2), 201. [31] Ostendorf S., Muller S. M., & Brand M. (2020). Neglecting long-term risks: Self-disclosure on social media and its relation to individual decision-making tendencies and problematic social-networks-use. Frontiers in Psychology, 11, 543388. [32] Pawlikowski M., Altstötter-Gleich C., & Brand M. (2013). Validation and psychometric properties of a short version of Young' s Internet Addiction Test. Computers in Human Behavior, 29(3), 1212-1223. [33] San Martín R., Appelbaum L. G., Huettel S. A., & Woldorff M. G. (2016). Cortical brain bctivity reflecting attentional biasing toward reward-predicting cues covaries with economic decision-making performance. Cerebral Cortex, 26, 1-10. [34] Schiebener, J., & Brand, M. (2015). Decision making under objective risk conditions-a review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychology Review, 25(2), 171-198. [35] Statista. (2024). Number of internet and social media users worldwide as of January 2024. https://www.statista.com/statistics/617136/digitalpopulation-worldwide/ Acessed on 2024-02-27. [36] Thomas A. W., Molter F., Krajbich I., Heekeren H. R., & Mohr, P. N. C. (2019). Gaze bias differences capture individual choice behaviour. Nature human behaviour, 3(6), 625-635. [37] Valyan A., Ekhtiari H., Smith R., & Paulus, M. P. (2020). Decision-making deficits in substance use disorders: Cognitive functions, assessment paradigms, and levels of evidence. In A. Verdejo-Garcia (Eds.), Cognition and Addiction (pp. 25-61). Academic Press. [38] Wang Z., Yang H., & Elhai J. D. (2022). Are there gender differences in comorbidity symptoms networks of problematic social media use, anxiety and depression symptoms? Evidence from network analysis. Personality and Individual Differences, 195.111705. [39] Wegmann, E., & Brand, M. (2020). Cognitive correlates in Gaming Disorder and social networks use disorder: A Comparison. Current Addiction Reports, 7(3), 356-364. [40] Wegmann E., Muller S. M., Trotzke P., & Brand M. (2021). Social-networks-related stimuli interferes decision making under ambiguity: Interactions with cue-induced craving and problematic social-networks use. Journal of Behavioral Addictions, 10(2), 291-301. [41] Wegmann E., Stodt B., & Brand M. (2015). Addictive use of social networking sites can be explained by the interaction of Internet use expectancies, Internet literacy, and psychopathological symptoms. Journal of Behavioral Addictions, 4(3), 155-162. |