[1] 成静, 张涛, 王涛, 董占伟. (2018). 一种基于图复杂度的移动导航服务回归测试优先方法. 计算机科学, 45(6), 141-144, 155. [2] 杨林腾. (2020). 移动导航使用对环境空间认知及寻路绩效的影响 (硕士学位论文). 华东师范大学, 上海. [3] 张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. 心理科学进展, 31(9), 1642-1664. [4] Bellana B., Liu Z. X., Diamond N. B., Grady C. L., & Moscovitch M. (2017). Similarities and differences in the default mode network across rest, retrieval, and future imagining. Human Brain Mapping, 38(3), 1155-1171. [5] Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial memory and imagery. eLife, 7, Article e33752. [6] Boone A. P., Gong X. Y., & Hegarty M. (2018). Sex differences in navigation strategy and efficiency. Memory and Cognition, 46(6), 909-922. [7] Bottini, R., & Doeller, C. F. (2020). Knowledge across reference frames: Cognitive maps and image spaces. Trends in Cognitive Sciences, 24(8), 606-619. [8] Brown A., Burles F., Iaria G., Einstein G., & Moscovitch M. (2023). Sex and menstrual cycle influence human spatial navigation strategies and performance. Scientific Reports, 13(1), Article 14953. [9] Brunec I. K., Bellana B., Ozubko J. D., Man V., Robin J., Liu Z. X., & Moscovitch M. (2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans. Current Biology, 28(13), 2129-2135.e6. [10] Brunec I. K., Robin J., Patai E. Z., Ozubko J. D., Javadi A. H., Barense M. D., & Moscovitch M. (2019). Cognitive mapping style relates to posterior-anterior hippocampal volume ratio. Hippocampus, 29(8), 748-754. [11] Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551-557. [12] Burgess N., Maguire E. A., & O’Keefe J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641. [13] Chen H. Y., Sato K., & Zheng M. C. (2021). Differences in wayfinding performance across types of navigation aids and understanding of environmental information among travelers. Journal of Asian Architecture and Building Engineering, 20(4), 383-397. [14] Chen J. Y., Li N., Shi Y. M., & Du J. (2023). Cross-cultural assessment of the effect of spatial information on firefighters' wayfinding performance: A virtual reality-based study. International Journal of Disaster Risk Reduction, 84, Article 103486. [15] Cheng B. J., Lin E. R., Wunderlich A., Gramann K., & Fabrikant S. I. (2023). Using spontaneous eye blink-related brain activity to investigate cognitive load during mobile map-assisted navigation. Frontiers in Neuroscience, 17, Article 1024583. [16] Chiang N. C. R., Huang S. C. L., Kuo N. F., & Shih C. C. (2023). Understanding cognitive maps from landmark and configurational representations. Learning and Motivation, 83, Article 101910. [17] Coutrot A., Schmidt S., Coutrot L., Pittman J., Hong L., Wiener J. M., & Spiers H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE, 14(3), Article e0213272. [18] Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), Article 6310. [19] Dong W. H., Qin T., Yang T. Y., Liao H., Liu B., Meng L. Q., & Liu Y. (2022). Wayfinding behavior and spatial knowledge acquisition: Are they the same in virtual reality and in real-world environments? Annals of the American Association of Geographers, 112(1), 226-246. [20] Duckham, M., & Kulik, L. (2003). “Simplest” paths: Automated route selection for navigation. In W. Kuhn, M. F. Worboys, & S. Timpf (Eds.), Spatial information theory: Foundations of geographic information science (pp. 169-185). Springer. [21] Ericson, J. D., & Warren, W. H. (2020). Probing the invariant structure of spatial knowledge: Support for the cognitive graph hypothesis. Cognition, 200, Article 104276. [22] Farran E. K., Bowler A., Karmiloff-Smith A., D’Souza H., Mayall L., & Hill E. L. (2019). Cross-domain associations between motor ability, independent exploration, and large-scale spatial navigation; attention deficit hyperactivity disorder, Williams syndrome, and typical development. Frontiers in Human Neuroscience, 13, Article 225. [23] Gardony A. L., Brunyé T. T., & Taylor H. A. (2015). Navigational aids and spatial memory impairment: The role of divided attention. Spatial Cognition and Computation, 15(4), 246-284. [24] Gramann K., Hoepner P., & Karrer-Gauss K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, Article 193. [25] He Q. L., McNamara T. P., Bodenheimer B., & Klippel A. (2019). Acquisition and transfer of spatial knowledge during wayfinding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(8), 1364-1386. [26] Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 49-58. [27] Hejtmánek L., Oravcová I., Motýl J., Horáček J., & Fajnerová I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15-24. [28] Hilton C., Kapaj A., & Fabrikant S. I. (2023). Landmark sequence learning from real-world route navigation and the impact of navigation aid Visualisation style. Journal of Cognition, 6(1), Article 41. [29] Iachini T., Ruotolo F., Rapuano M., Sbordone F. L., & Ruggiero G. (2023). The role of temporal order in egocentric and Allocentric spatial representations. Journal of Clinical Medicine, 12(3), Article 1132. [30] Isaacson, M., & Shoval, N. (2006). Application of tracking technologies to the study of pedestrian spatial behavior. The Professional Geographer, 58(2), 172-183. [31] Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93-129. [32] Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users' wayfinding behavior. Cartographic Perspectives, 75, 17-28. [33] Janzen, G. (2006). Memory for object location and route direction in virtual large-scale space. Quarterly Journal of Experimental Psychology, 59(3), 493-508. [34] Krukar J., Anacta V. J., & Schwering A. (2020). The effect of orientation instructions on the recall and reuse of route and survey elements in wayfinding descriptions. Journal of Environmental Psychology, 68, Article 101407. [35] Krukar J., Navas Medrano S., & Schwering A. (2023). Route effects in city-based survey knowledge estimates. Cognitive Processing, 24(2), 213-231. [36] Laczó M., Martinkovic L., Lerch O., Wiener J. M., Kalinova J., Matuskova V., & Laczó J. (2022). Different profiles of spatial navigation deficits in Alzheimer' s disease biomarker-positive versus biomarker-negative older adults with amnestic mild cognitive impairment. Frontiers in Aging Neuroscience, 14, Article 886778. [37] Lapeyre B., Hourlier S., Servantie X., N' Kaoua B., & Sauzéon H. (2011). Using the landmark-route-survey framework to evaluate spatial knowledge obtained from synthetic vision systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(6), 647-661. [38] Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11-12), 765-779. [39] Löwen H., Krukar J., & Schwering A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), Article 149. [40] Lugli L., Ragni M., Piccardi L., & Nori R. (2017). Hypermedia navigation: Differences between spatial cognitive styles. Computers in Human Behavior, 66, 191-200. [41] Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21(1), 73-82. [42] McNamara T. P., Rump B., & Werner S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin and Review, 10(3), 589-595. [43] Merrill E. C., Yang Y. Y., Roskos B., & Steele S. (2016). Sex differences in using spatial and verbal abilities influence route learning performance in a virtual environment: A comparison of 6- to 12-year old boys and girls. Frontiers in Psychology, 7, Article 258. [44] Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS ( pp. 312-321). Springer Berlin Heidelberg. [45] Morag, I., & Pintelon, L. (2021). Digital wayfinding systems in hospitals: A qualitative evaluation based on managerial perceptions and considerations before and after implementation. Applied Ergonomics, 90, Article 103260. [46] Munion A. K., Stefanucci J. K., Rovira E., Squire P., & Hendricks M. (2019). Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychonomic Bulletin and Review, 26(6), 1933-1940. [47] Münzer S., Lörch L., & Frankenstein J. (2020). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology: Applied, 26(1), 73-88. [48] Münzer S., Zimmer H. D., & Baus J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology: Applied, 18(1), 18-37. [49] Nazareth A., Huang X., Voyer D., & Newcombe N. (2019). A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin and Review, 26(5), 1503-1528. [50] Nori, R., & Giusberti, F. (2006). Predicting cognitive styles from spatial abilities. The American Journal of Psychology, 119(1), 67-86. [51] Ohtsu, K. (2017). Spatial learning by egocentric updating during wayfinding in a real middle-scale environment: Effects of differences in route planning and following. Journal of Environmental Psychology, 50, 51-59. [52] Peer M., Brunec I. K., Newcombe N. S., & Epstein R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54. [53] Puthusseryppady V., Morrissey S., Spiers H., Patel M., & Hornberger M. (2022). Predicting real world spatial disorientation in Alzheimer' s disease patients using virtual reality navigation tests. Scientific Reports, 12(1), Article 13397. [54] Richter, K. F. (2007). A uniform handling of different landmark types in route directions. In S. Winter, M. Duckham, L. Kulik, & B. Kuipers (Eds.), Spatial information theory ( pp. 373-389). Springer Berlin Heidelberg. [55] Richter, K. F., & Duckham, M. (2008). Simplest instructions: Finding easy-to-describe routes for navigation. In T. J. Cova, H. J. Miller, K. Beard, A. U. Frank, & M. F. Goodchild (Eds.), Geographic information science (pp. 274-289). Springer Berlin Heidelberg. [56] Ruggiero G., Ruotolo F., & Iachini T. (2022). How ageing and blindness affect egocentric and allocentric spatial memory. Quarterly Journal of Experimental Psychology, 75(9), 1628-1642. [57] Ruginski I. T., Creem-Regehr S. H., Stefanucci J. K., & Cashdan E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12-20. [58] Ruotolo F., Ruggiero G., Raemaekers M., Iachini T., van Der Ham, I. J. M., Fracasso A., & Postma A. (2019). Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience, 409, 235-252. [59] Schwering A., Krukar J., Li R., Anacta V. J., & Fuest S. (2017). Wayfinding through orientation. Spatial Cognition and Computation, 17(4), 273-303. [60] Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in child development and behavior. Elsevier. [61] Slone E., Burles F., Robinson K., Levy R. M., & Iaria G. (2015). Floor plan connectivity influences wayfinding performance in virtual environments. Environment and Behavior, 47(9), 1024-1053. [62] von Stülpnagel, R., & Steffens, M. C. (2012). Can active navigation be as good as driving? A comparison of spatial memory in drivers and backseat drivers. Journal of Experimental Psychology: Applied, 18(2), 162-177. [63] Willis K. S., Hölscher C., Wilbertz G., & Li C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100-110. [64] Witmer B. G., Bailey J. H., Knerr B. W., & Parsons K. C. (1996). Virtual spaces and real world places: Transfer of route knowledge. International Journal of Human-Computer Studies, 45(4), 413-428. [65] Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Frontiers in Human Neuroscience, 8, Article 571. [66] Yang, Y. Y., & Merrill, E. C. (2022). Wayfinding in children: A descriptive literature review of research methods. The Journal of Genetic Psychology, 183(6), 580-608. [67] Zhao J. Y., Simpson M., Wallgrün J. O., Sajjadi P., & Klippel A. (2020). Exploring the effects of geographic scale on spatial learning. Cognitive Research: Principles and Implications, 5(1), Article 14. [68] Zhong, J. Y., & Kozhevnikov, M. (2016). Relating allocentric and egocentric survey-based representations to the self-reported use of a navigation strategy of egocentric spatial updating. Journal of Environmental Psychology, 46, 154-175. |