[1] 张颖, 冯廷勇. (2014). 青少年风险决策的发展认知神经机制. 心理科学进展, 22(7), 1139-1148. [2] Baum G. L., Ciric R., Roalf D. R., Betzel R. F., Moore T. M., & Shinohara R. T., & Satterthwaite T. D. (2017). Modular segregation of structural brain networks supports the development of executive function in youth. Current Biology, 27(11), 1561-1572. [3] Blakemore, S. J. (2018). Avoiding social risk in adolescence. Current Directions in Psychological Science, 27(2), 116-122. [4] Braams B. R., Davidow J. Y., & Somerville L. H. (2019). Developmental patterns of change in the influence of safe and risky peer choices on risky decision-making. Developmental Science, 22(1), 1-14. Article e12717. [5] Casey B. J., Getz S., & Galvan A. (2008). The adolescent brain. Developmental Review, 28(1), 62-77. [6] Casey B. J., Heller A. S., Gee D. G., & Cohen A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 29-34. [7] Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society of London. Mathematical, Physical and Engineering Sciences, 362(1825), 2871-2888. [8] Costa F. M., Jessor R., Turbin M. S., Dong Q., Zhang H. C., & Wang C. H. (2017). Social Context Protection and Risk in Adolescent Behavior and Development. In R. Jessor (Ed.), Problem behavior theory and the social context (pp. 57-88). Springer. [9] Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13(9), 636-650. [10] D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115-142. [11] Dahl R. E., Allen N. B., Wilbrecht L., & Suleiman A. B. (2018). Importance of investing in adolescence from a developmental science perspective. Nature, 554(7693), 441-450. [12] Do K. T., Sharp P. B., & Telzer E. H. (2020). Modernizing conceptions of valuation and cognitive-control deployment in adolescent risk taking. Current Directions in Psychological Science, 29(1), 102-109. [13] Duell, N., & Steinberg, L. (2019). Positive risk taking in adolescence. Child Development Perspectives, 13(1), 48-52. [14] Duell, N., & Steinberg, L. (2020). Differential correlates of positive and negative risk taking in adolescence. Journal of Youth and Adolescence, 49(6), 1162-1178. [15] Ernst, M. (2014). The triadic model perspective for the study of adolescent motivated behavior. Brain and Cognition, 89, 104-111. [16] Gibbons F. X., Houlihan A. E., & Gerrard M. (2009). Reason and reaction: the utility of a dual-focus, dual-processing perspective on promotion and prevention of adolescent health risk behaviour. British Journal of Health Psychology, 14(2), 231-248. [17] Hauser T. U., Iannaccone R., Walitza S., Brandeis D., & Brem S. (2015). Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. NeuroImage, 104, 347-354. [18] Heron, M. (2017). Deaths: leading causes for 2015. National Vital Statistics Reports, 66(5), 1-76. [19] Jessor, R. (2017). Neighborhood Variation and Successful Adolescent Development. In R. Jessor (Ed.), Problem behavior theory and the social context (pp. 57-88). Springer. [20] Jessor R.,& Jessor, S. L. (1977). Problem behavior and psychosocial development: A longitudinal study of youth NY: Academic Press A longitudinal study of youth. NY: Academic Press. [21] Khurana, A., & Romer, D. (2020). Developmental Trends in Adaptive and Maladaptive Risk Taking in Youth. Reference Module in Neuroscience and Biobehavioral Psychology. Advance online publication. [22] Khurana A., Romer D., Betancourt L. M., & Hurt H. (2018). Modeling trajectories of sensation seeking and impulsivity dimensions from early to late adolescence: universal trends or distinct sub-groups? Journal of Youth and Adolescence, 47(9), 1992-2005. [23] Kim-Spoon J., Deater-Deckard K., Lauharatanahirun N., Farley J. P., Chiu P. H., Bickel W. K., & King-Casas B. (2017). Neural interaction between risk sensitivity and cognitive control predicting health risk behaviors among late adolescents. Journal of Research on Adolescence, 27(3), 674-682. [24] Li, R. (2017). Flexing dual-systems models: How variable cognitive control in children informs our understanding of risk-taking across development. Developmental Cognitive Neuroscience, 27, 91-98. [25] Maslowsky J., Keating D. P., Monk C. S., & Schulenberg J. (2011). Planned versus unplanned risks: neurocognitive predictors of subtypes of adolescents’ risk behavior. International Journal of Behavioral Development, 35(2), 152-160. [26] Maslowsky J., Owotomo O., Huntley E. D., & Keating D. (2019). Adolescent risk behavior: differentiating reasoned and reactive risk-taking. Journal of Youth and Adolescence, 48(2), 243-255. [27] Murty V. P., Calabro F., & Luna B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience and Biobehavioral Reviews, 70, 46-58. [28] Pagnoni G., Zink C. F., Montague P. R., & Berns G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5(2), 97-98. [29] Patton G. C., Sawyer S. M., Santelli J. S., Ross D. A., Afifi R., Allen N. B., & Viner R. M. (2016). Our future: a Lancet commission on adolescent health and wellbeing. The Lancet, 387(10036), 2423-2478. [30] Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision making: Implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7(1), 1-44. [31] Reyna V. F., Wilhelms E. A., McCormick M. J., & Weldon R. B. (2015). Development of risky decision making: Fuzzy-trace theory and neurobiological perspectives. Child Development Perspectives, 9(2), 122-127. [32] Rodrigo M. J., Padrón I., de Vega M., & Ferstl E. C. (2014). Adolescents'risky decision-making activates neural networks related to social cognition and cognitive control processes. Frontiers in Human Neuroscience, 8, Article 60. [33] Roeper, J. (2013). Dissecting the diversity of midbrain dopamine neurons. Trends in Neurosciences, 36(6), 336-342. [34] Romer D., Reyna V. F., & Satterthwaite T. D. (2017). Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. Developmental Cognitive Neuroscience, 27, 19-34. [35] Rosenbaum G. M., Venkatraman V., Steinberg L., & Chein J. M. (2018). The influences of described and experienced information on adolescent risky decision making. Developmental Review, 47, 23-43. [36] Satterthwaite T. D., Wolf D. H., Erus G., Ruparel K., Elliott M. A., Gennatas E. D., & Gur R. E. (2013). Functional maturation of the executive system during adolescence. Journal of Neuroscience, 33(41), 16249-16261. [37] Schultz W., Dayan P., & Montague P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. [38] Shen Y., Zhao H., Zhu J. Y., He Y., Zhang X., Liu S. H., & Chen J. H. (2020). Comparison of intentional inhibition and reactive inhibition in adolescents and adults: An ERP study. Developmental Neuropsychology, 45(2), 66-78. [39] Shenhav A., Botvinick M. M., & Cohen J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217-240. [40] Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78-106. [41] Steinberg L., Icenogle G., Shulman E. P., Breiner K., Chein J., Bacchini D., & Takash, H. M. S. (2018). Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental Science, 21(2), Article e12532. [42] Van Hoorn J., McCormick E. M., Rogers C. R., Ivory S. L., & Telzer E. H. (2018). Differential effects of parent and peer presence on neural correlates of risk taking in adolescence. Social Cognitive and Affective Neuroscience, 13(9), 945-955. [43] Vazsonyi A. T., Chen P., Jenkins D. D., Burcu E., Torrente G., & Sheu C. J. (2010). Jessor's problem behavior theory: Cross-national evidence from Hungary, the Netherlands, Slovenia, Spain, Switzerland, Taiwan, Turkey, and the United States. Developmental Psychology, 46(6), 1779-1791. [44] Wahlstrom D., Collins P., White T., & Luciana M. (2010). Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain and Cognition, 72(1), 146-159. |