[1] 黄希庭, 郭秀艳, 聂晶. (2003). 认知加工中时间与非时间信息的相互关系. 心理科学, 26(5), 770-774. [2] 李宝林, 黄希庭. (2019). 时距知觉适应后效的研究进展. 生理学报, 71(1), 95-104. [3] 张雯, 董亓易如, 龚丽娟, 尚琪, 程琛, 丁雪辰. (2022). 运算动量效应的理论解释及其发展性预测因素. 心理科学进展, 30(12), 2777-2788. [4] Battacchi M. W., Pelamatti G. M., & Umiltà C. (1990). Is there a modality effect? Evidence for visual recency and suffix effects. Memory and Cognition, 18(6), 651-658. [5] Berggren, N., & Eimer, M. (2019). The roles of relevance and expectation for the control of attention in visual search. Journal of Experimental Psychology: Human Perception and Performance, 45(9), 1191-1205. [6] Block R. A., Hancock P. A., & Zakay D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330-343. [7] Bonato M., D'Ovidio U., Fias W., & Zorzi M. (2021). A momentum effect in temporal arithmetic. Cognition, 206, Article 104488. [8] Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11(12), 504-513. [9] Fabbri M., Cancellieri J., & Natale V. (2012). The a theory of magnitude (ATOM) model in temporal perception and reproduction tasks. Acta Psychologica, 139(1), 111-123. [10] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. [11] Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition-from single digits to arithmetic. Quarterly Journal of Experimental Psychology, 67(8), 1461-1483. [12] Gorea, A. (2011). Ticks per thought or thoughts per tick? A selective review of time perception with hints on future research. Journal of Physiology-Paris, 105(4-6), 153-163. [13] Kanai R., Lloyd H., Bueti D., & Walsh V. (2011). Modality-independent role of the primary auditory cortex in time estimation. Experimental Brain Research, 209(3), 465-471. [14] Knops A., Dehaene S., Berteletti I., & Zorzi M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? Quarterly Journal of Experimental Psychology, 67(8), 1541-1556. [15] Knops A., Viarouge A., & Dehaene S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention Perception and Psychophysics, 71(4), 803-821. [16] LeCompte, D. C. (1992). In search of a strong visual recency effect. Memory and Cognition, 20(5), 563-572. [17] Mattes, S., & Ulrich, R. (1998). Directed attention prolongs the perceived duration of a brief stimulus. Perception and Psychophysics, 60(8), 1305-1317. [18] Matthews, W. J. (2013). How does sequence structure affect the judgment of time? Exploring a weighted sum of segments model. Cognitive Psychology, 66(3), 259-282. [19] Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865-907. [20] McCrink K., Dehaene S., & Dehaene-Lambertz G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324-1333. [21] Murdock, B. B., Jr. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482-488. [22] Nairne, J. S. (1988). A framework for interpreting recency effects in immediate serial recall. Memory and Cognition, 16(4), 343-352. [23] Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408-415. [24] Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 4(3), 193-202. [25] Roach N. W., Mcgraw P. V., Whitaker D. J., & Heron J. (2017). Generalization of prior information for rapid Bayesian time estimation. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 412-417. [26] Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232(1), 43-49. [27] Shaki S., Sery N., & Fischer M. H. (2015). 1+2 is more than 2+1: Violations of commutativity and identity axioms in mental arithmetic. Journal of Cognitive Psychology, 27(4), 471-477. [28] Shi Z. H., Church R. M., & Meck W. H. (2013). Bayesian optimization of time perception. Trends in Cognitive Sciences, 17(11), 556-564. [29] Sørensen T. A., Vangkilde S., & Bundesen C. (2015). Components of attention modulated by temporal expectation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(1), 178-192. [30] Takahashi, K., & Watanabe, K. (2015). Mental summation of temporal duration within and across senses. PLoS ONE, 10(10), Article e0141466. [31] Thomas, E. A. C., & Weaver, W. B. (1975). Cognitive processing and time perception. Perception and Psychophysics, 17(4), 363-367. [32] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488. [33] Xuan B., Zhang D. R., He S., & Chen X. C. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), Article 2. [34] Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6(1), 12-16. [35] Zhou F., Zhao Q., Chen C. S., & Zhou X. L. (2012). Mental representations of arithmetic facts: Evidence from eye movement recordings supports the preferred operand-order-specific representation hypothesis. Quarterly Journal of Experimental Psychology, 65(4), 661-674. [36] Zhou X. L., Chen C. H., Zhang H. C., Chen C. S., Zhou R. L., & Dong Q. (2007). The operand-order effect in single-digit multiplication: An ERP study of Chinese adults. Neuroscience Letters, 414(1), 41-44. |