Journal of Psychological Science ›› 2025, Vol. 48 ›› Issue (1): 21-33.DOI: 10.16719/j.cnki.1671-6981.20250103
• General Psychology,Experimental Psychology & Ergonomics • Previous Articles Next Articles
Liu Chengdong, Chen Enguang, Fang Haiqing, Yang Haixin, Wang Hailing
Online:
2025-01-20
Published:
2025-02-21
刘成栋, 陈恩光, 方海情, 杨海鑫, 汪海玲**
通讯作者:
**汪海玲,E-mail: hailingwang@sdnu.edu.cn
基金资助:
Liu Chengdong, Chen Enguang, Fang Haiqing, Yang Haixin, Wang Hailing. The Impact of Eye Gaze on The Priority of Configural and Featural Face Processing[J]. Journal of Psychological Science, 2025, 48(1): 21-33.
刘成栋, 陈恩光, 方海情, 杨海鑫, 汪海玲. 面孔视向在面孔构形和特征加工优先性中的作用*[J]. 心理科学, 2025, 48(1): 21-33.
[1] 汪海玲, 傅世敏. (2011). 面孔倒置效应的研究与理论述评. 心理科学进展, 19(11), 1588-1594. [2] 汪亚珉, 黄雅梅. (2011). 面孔识别中的构形加工与特征加工. 心理科学进展, 19(8), 1126-1137. [3] 姚树霞, 杨东, 齐森青, 雷燕, Ding, C. (2012). 视觉空间注意研究中的N2pc成分述评. 心理科学进展, 20(3), 365-375. [4] Ayzenberg, V., & Behrmann, M. (2022). Does the brain' s ventral visual pathway compute object shape? Trends in Cognitive Sciences, 26(12), 1119-1132. [5] Bentin S., Allison T., Puce A., Perez E., & McCarthy G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551-565. [6] Bombari D., Schmid P. C., Mast M. S., Birri S., Mast F. W., & Lobmaier J. S. (2013). Emotion recognition: The role of featural and configural face information. Quarterly Journal of Experimental Psychology, 66(12), 2426-2442. [7] Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. [8] Carbon, C. C., & Leder, H. (2005). When feature information comes first! Early processing of inverted faces. Perception, 34(9), 1117-1134. [9] Chen X. W., Xu B., Chen Y. Z., Zeng X. Q., Zhang Y., & Fu S. M. (2023). Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies. Psychophysiology, 60(8), Article e14290. [10] Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107-117. [11] Doi H., Ueda K., & Shinohara K. (2009). Neural correlates of the stare-in-the-crowd effect. Neuropsychologia, 47(4), 1053-1060. [12] Driver IV J., Davis G., Ricciardelli P., Kidd P., Maxwell E., & Baron-Cohen S. (1999). Gaze perception triggers reflexive visuospatial orienting. Visual Cognition, 6(5), 509-540. [13] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. [14] Fink G. R., Marshall J. C., Halligan P. W., Frith C. D., Frackowiak R. S. J., & Dolan R. J. (1997). Hemispheric specialization for global and local processing: The effect of stimulus category. Proceedings of the Royal Society B: Biological Sciences, 264(1381), 487-494. [15] Folstein, J. R., & van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152-170. [16] Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin and Review, 5(3), 490-495. [17] Godard O., Leleu A., Rebaï M., & Fiori N. (2013). Sex differences in interhemispheric communication during face identity encoding: Evidence from ERPs. Neuroscience Research, 76(1-2), 58-66. [18] Goffaux V., Peters J., Haubrechts J., Schiltz C., Jansma B., & Goebel R. (2011). From coarse to fine? Spatial and temporal dynamics of cortical face processing. Cerebral Cortex, 21(2), 467-476. [19] Guo F. M., Wang C. M., Tao G. T., Ma H. L., Zhang J. X., & Wang Y. (2024). A longitudinal study on the impact of high-altitude hypoxia on perceptual processes. Psychophysiology, 61(6), Article e14548. [20] Henderson J. M., Williams C. C., & Falk R. J. (2005). Eye movements are functional during face learning. Memory and Cognition, 33(1), 98-106. [21] Hoffman, E. A., & Haxby, J. V. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3(1), 80-84. [22] Ikeda K., Sugiura A., & Hasegawa T. (2013). Fearful faces grab attention in the absence of late affective cortical responses. Psychophysiology, 50(1), 60-69. [23] Itier R. J., Alain C., Kovacevic N., & McIntosh A. R. (2007). Explicit versus implicit gaze processing assessed by ERPs. Brain Research, 1177, 79-89. [24] Itier R. J., Latinus M., & Taylor M. J. (2006). Face, eye and object early processing: What is the face specificity? NeuroImage, 29(2), 667-676. [25] Latinus, M., & Taylor, M. J. (2005). Holistic processing of faces: Learning effects with Mooney faces. Journal of Cognitive Neuroscience, 17(8), 1316-1327. [26] Le Grand R., Mondloch C. J., Maurer D., & Brent H. P. (2001). Early visual experience and face processing. Nature, 410(6849), Article 890. [27] Lee J. K. W., Janssen S. M. J., & Estudillo A. J. (2022). A more featural based processing for the self-face: An eye-tracking study. Consciousness and Cognition, 105, Article 103400. [28] Li J., Oksama L., Nummenmaa L., & Hyönä J. (2018). Angry faces are tracked more easily than neutral faces during multiple identity tracking. Cognition and Emotion, 32(3), 464-479. [29] Lian Y. J., Zhang Q., Yang X. X., Fang H. Q., & Wang H. L. (2024). Rigid facial motion at study facilitates the holistic processing of own-race faces during the structural encoding stage. International Journal of Psychophysiology, 203, Article 112407. [30] Madipakkam A. R., Rothkirch M., Guggenmos M., Heinz A., & Sterzer P. (2015). Gaze direction modulates the relation between neural responses to faces and visual awareness. Journal of Neuroscience, 35(39), 13287-13299. [31] Maurer D., O’Craven K. M., Le Grand R., Mondloch C. J., Springer M. V., Lewis T. L., & Grady C. L. (2007). Neural correlates of processing facial identity based on features versus their spacing. Neuropsychologia, 45(7), 1438-1451. [32] McCrackin, S. D., & Itier, R. J. (2019). Perceived gaze direction differentially affects discrimination of facial emotion, attention, and gender-an ERP study. Frontiers in Neuroscience, 13, Article 517. [33] Mercure E., Dick F., Halit H., Kaufman J., & Johnson M. H. (2008). Differential lateralization for words and faces: Category or psychophysics? Journal of Cognitive Neuroscience, 20(11), 2070-2087. [34] Pascalis O., Loevenbruck H., Quinn P. C., Kandel S., Tanaka J. W., & Lee K. (2014). On the links among face processing, language processing, and narrowing during development. Child Development Perspectives, 8(2), 65-70. [35] Peters J. C., Goebel R., & Goffaux V. (2018). From coarse to fine: Interactive feature processing precedes local feature analysis in human face perception. Biological Psychology, 138, 1-10. [36] Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. [37] Pönkänen L. M., Alhoniemi A., Leppänen J. M., & Hietanen J. K. (2011). Does it make a difference if I have an eye contact with you or with your picture? An ERP study. Social Cognitive and Affective Neuroscience, 6(4), 486-494. [38] Proverbio A. M., Brignone V., Matarazzo S., Del Zotto M., & Zani A. (2006). Gender differences in hemispheric asymmetry for face processing. BMC Neuroscience, 7, Article 44. [39] Proverbio A. M., Riva F., Martin E., & Zani A. (2010). Face coding is bilateral in the female brain. PLoS ONE, 5(6), Article e11242. [40] Puce A., Allison T., Bentin S., Gore J. C., & McCarthy G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience, 18(6), 2188-2199. [41] Qiu Z. G., Becker S. I., & Pegna A. J. (2022). Spatial attention shifting to emotional faces is contingent on awareness and task relevancy. Cortex, 151, 30-48. [42] Rato M. L., Mares I., de Sousa D. A., Senju A., & Martins I. P. (2019). Direct gaze partially overcomes hemispatial neglect and captures spatial attention. Frontiers in Psychology, 9, Article 2702. [43] Renzi C., Schiavi S., Carbon C. C., Vecchi T., Silvanto J., & Cattaneo Z. (2013). Processing of featural and configural aspects of faces is lateralized in dorsolateral prefrontal cortex: A TMS study. NeuroImage, 74, 45-51. [44] Rhodes G., Locke V., Ewing L., & Evangelista E. (2009). Race coding and the other-race effect in face recognition. Perception, 38(2), 232-241. [45] Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 132(3), 300-312. [46] Schomaker J., Roos R., & Meeter M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral Neuroscience, 128(2), 146-160. [47] Scott, L. S., & Nelson, C. A. (2006). Featural and configural face processing in adults and infants: A behavioral and electrophysiological investigation. Perception, 35(8), 1107-1128. [48] Smith M. L., Cottrell G. W., Gosselin F., & Schyns P. G. (2005). Transmitting and decoding facial expressions. Psychological Science, 16(3), 184-189. [49] Song J., Liu M., Yao S., Yan Y., Ding H. C., Yan T. Y., & Xu G. Z. (2017). Classification of emotional expressions is affected by inversion: Behavioral and electrophysiological evidence. Frontiers in Behavioral Neuroscience, 11, Article 21. [50] Stasch J., Mohr B., & Neuhaus A. H. (2018). Disentangling the interaction of sex differences and hemispheric specialization for face processing-evidence from ERPs. Biological Psychology, 136, 144-150. [51] Tanaka J. W., Kiefer M., & Bukach C. M. (2004). A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition, 93(1), B1-B9. [52] Vizioli L., Foreman K., Rousselet G. A., & Caldara R. (2010). Inverting faces elicits sensitivity to race on the N170 component: A cross-cultural study. Journal of Vision, 10(1), Article 15. [53] Wang H. L., Chen E. G., Li J. J., Ji F. L., Lian Y. J., & Fu S. M. (2022). Configural but not featural face information is associated with automatic processing. Frontiers in Human Neuroscience, 16, Article 884823. [54] Wang, H. L., & Fu, S. M. (2018). Spatial Attention modulates the temporal sequence of hemispheric asymmetry in configural and featural face processing. Neuropsychologia, 111, 269-275. [55] Wang H. L., Guo S. C., & Fu S. M. (2016). Double dissociation of configural and featural face processing on P1 and P2 components as a function of spatial attention. Psychophysiology, 53(8), 1165-1173. [56] Wang H. L., Lian Y. J., Wang A. Q., Chen E. G., & Liu C. D. (2023). Face motion form at learning influences the time course of face spatial frequency processing during test. Biological Psychology, 183, Article 108691. [57] Wang H. L., Qiu R. Y., Li W. Y., Li S. X., & Fu S. M. (2020). Cultural differences in the time course of configural and featural processing for own-race faces. Neuroscience, 446, 157-170. [58] Wang H. L., Sun P., Ip C., Zhao X., & Fu S. M. (2015). Configural and featural face processing are differently modulated by attentional resources at early stages: An event-related potential study with rapid serial visual presentation. Brain Research, 1602, 75-84. [59] Wieser M. J., Hambach A., & Weymar M. (2018). Neurophysiological correlates of attentional bias for emotional faces in socially anxious individuals-Evidence from a visual search task and N2pc. Biological Psychology, 132, 192-201. [60] Young S. G., Slepian M. L., Wilson J. P., & Hugenberg K. (2014). Averted eye-gaze disrupts configural face encoding. Journal of Experimental Social Psychology, 53, 94-99. [61] Yuan J., Zhang Q., & Cui L. X. (2021). Disgust face captures more attention in individuals with high social anxiety when cognitive resources are abundant: Evidence from N2pc. Neuropsychologia, 151, Article 107731. [62] Zachariou V., Nikas C. V., Safiullah Z. N., Gotts S. J., & Ungerleider L. G. (2017). Spatial mechanisms within the dorsal visual pathway contribute to the configural processing of faces. Cerebral Cortex, 27(8), 4124-4138. [63] Zhang Y., Zhang H., & Fu S. M. (2024). Relative saliency affects attentional capture and suppression of color and face singleton distractors: Evidence from event-related potential studies. Cerebral Cortex, 34(4), Article bhae176. [64] Zhou G. M., Cheng Z. J., Yue Z. Z., Tredoux C., He J. B., & Wang L. (2015). Own-race faces capture attention faster than other-race faces: Evidence from response time and the N2pc. PLoS ONE, 10(6), Article e0127709. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||