Journal of Psychological Science ›› 2025, Vol. 48 ›› Issue (1): 34-43.DOI: 10.16719/j.cnki.1671-6981.20250104
• General Psychology,Experimental Psychology & Ergonomics • Previous Articles Next Articles
Xin Haiyan1, Chen Ximei1, Li Wei1, Chen Hong1,2,3
Online:
2025-01-20
Published:
2025-02-21
辛海燕1, 陈曦梅1, 李为1, 陈红**1,2,3
通讯作者:
**陈红,E-mail: chenhswu@163.com
基金资助:
Xin Haiyan, Chen Ximei, Li Wei, Chen Hong. Neural Mechanisms of Childhood Obesity:A Reward-Inhibition Dual System Perspective[J]. Journal of Psychological Science, 2025, 48(1): 34-43.
辛海燕, 陈曦梅, 李为, 陈红. 儿童超重/肥胖的神经机制:基于奖赏-抑制双系统视角*[J]. 心理科学, 2025, 48(1): 34-43.
[1] Adise S., Allgaier N., Laurent J., Hahn S., Chaarani B., Owens M., & Garavan H. P. (2021). Multimodal brain predictors of current weight and weight gain in children enrolled in the ABCD study ®. Developmental Cognitive Neuroscience, 49, Article 100948. [2] Adise S., Geier C. F., Roberts N. J., White C. N., & Keller K. L. (2018). Is brain response to food rewards related to overeating? A test of the reward surfeit model of overeating in children. Appetite, 128, 167-179. [3] Adise S., Geier C. F., Roberts N. J., White C. N., & Keller K. L. (2019). Food or money? Children' s brains respond differently to rewards regardless of weight status. Pediatric Obesity, 14(2), Article e12469. [4] Adise S., Marshall A. T., Hahn S., Zhao S. M., Kan E., Rhee K. E., & Sowell E. R. (2023). Longitudinal assessment of brain structure and behaviour in youth with rapid weight gain: Potential contributing causes and consequences. Pediatric Obesity, 18(2), Article e12985. [5] Adise S., White C. N., Roberts N. J., Geier C. F., & Keller K. L. (2021). Children' s inhibitory control abilities in the presence of rewards are related to weight status and eating in the absence of hunger. Appetite, 167, Article 105610. [6] Alosco M. L., Stanek K. M., Galioto R., Korgaonkar M. S., Grieve S. M., Brickman A. M., & Gunstad J. (2014). Body mass index and brain structure in healthy children and adolescents. International Journal of Neuroscience, 124(1), 49-55. [7] Appelhans, B. M. (2009). Neurobehavioral inhibition of reward-driven feeding: Implications for dieting and obesity. Obesity, 17(4), 640-647. [8] Assari, S., & Boyce, S. (2021). Resting-state functional connectivity between putamen and salience network and childhood body mass index. Neurology International, 13(1), 85-101. [9] Assari S., Boyce S., & Bazargan M. (2020). Nucleus accumbens functional connectivity with the frontoparietal network predicts subsequent change in body mass index for American children. Brain Sciences, 10(10), Article 703. [10] Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79. [11] Batterink L., Yokum S., & Stice E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage, 52(4), 1696-1703. [12] Bhutani S., Christian I. R., Palumbo D., & Wiggins J. L. (2021). Reward-related neural correlates in adolescents with excess body weight. NeuroImage: Clinical, 30, Article 102618. [13] Black W. R., Lepping R. J., Bruce A. S., Powell J. N., Bruce J. M., Martin L. E., & Simmons W. K. (2014). Tonic hyper-connectivity of reward neurocircuitry in obese children. Obesity, 22(7), 1590-1593. [14] Brooks S. J., Smith C., & Stamoulis C. (2023). Excess BMI in early adolescence adversely impacts maturating functional circuits supporting high-level cognition and their structural correlates. International Journal of Obesity, 47(7), 590-605. [15] Bruce A. S., Martin L. E., & Savage C. R. (2011). Neural correlates of pediatric obesity. Preventive Medicine, 52, S29-S35. [16] Carnell S., Thapaliya G., Jansen E., & Chen L. Y. (2023). Biobehavioral susceptibility for obesity in childhood: Behavioral, genetic and neuroimaging studies of appetite. Physiology and Behavior, 271, Article 114313. [17] Casey B. J., Jones R. M., & Hare, T. A. (2008). The adolescent brain. In A. Kingstone & M. B. Miller (Eds.), The year in cognitive neuroscience 2008 (pp. 111-126). Blackwell Publishing.. [18] Chen X. M., Gao X., Qin J. M., Wang C., Xiao M. Y., Tian Y., & Chen H. (2021). Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. NeuroImage: Clinical, 30, Article 102671. [19] Chen X. M., Li W., Liu Y., Xiao M. Y., & Chen H. (2023). Altered effective connectivity between reward and inhibitory control networks in people with binge eating episodes: A spectral dynamic causal modeling study. Appetite, 188, Article 106763. [20] Crino M., Sacks G., Vandevijvere S., Swinburn B., & Neal B. (2015). The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Current Obesity Reports, 4(1), 1-10. [21] Cui J. Q., Li G. Y., Zhang M. M., Xu J. Y., Qi H. W., Ji W. B., & Zhang Y. (2023). Associations between body mass index, sleep-disordered breathing, brain structure, and behavior in healthy children. Cerebral Cortex, 33(18), 10087-10097. [22] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. [23] Dietz, W. H. (1998). Childhood weight affects adult morbidity and mortality. The Journal of Nutrition, 128(2), 411S-414S. [24] Dwyer D. B., Falkai P., & Koutsouleris N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91-118. [25] Farr O. M., Li C. S. R., & Mantzoros C. S. (2016). Central nervous system regulation of eating: Insights from human brain imaging. Metabolism, 65(5), 699-713. [26] Glazer J. E., Kelley N. J., Pornpattananangkul N., Mittal V. A., & Nusslock R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132, 184-202. [27] Gluck M. E., Viswanath P., & Stinson E. J. (2017). Obesity, appetite, and the prefrontal cortex. Current Obesity Reports, 6(4), 380-388. [28] Granziera F., Guzzardi M. A., & Iozzo P. (2021). Associations between the Mediterranean diet pattern and weight status and cognitive development in preschool children. Nutrients, 13(11), Article 3723. [29] Haynos A. F., Camchong J., Pearson C. M., Lavender J. M., Mueller B. A., Peterson C. B., & Lim K. O. (2021). Resting state Hypoconnectivity of reward networks in binge eating disorder. Cerebral Cortex, 31(5), 2494-2504. [30] Jiang F. K., Li G. Y., Ji W. B., Zhang Y. Q., Wu F. F., Hu Y., & Zhang Y. (2023). Obesity is associated with decreased gray matter volume in children: A longitudinal study. Cerebral Cortex, 33(7), 3674-3682. [31] Kaltenhauser S., Weber C. F., Lin H., Mozayan A., Malhotra A., Constable R. T., & Payabvash S. (2023). Association of body mass index and waist circumference with imaging metrics of brain integrity and functional connectivity in children aged 9 to 10 years in the US, 2016-2018. JAMA Network Open, 6(5), Article e2314193. [32] Kennedy J. T., Collins P. F., & Luciana M. (2016). Higher adolescent body mass index is associated with lower regional gray and white matter volumes and lower levels of positive emotionality. Frontiers in Neuroscience, 10, Article 413. [33] Kim M. S., Luo S., Azad A., Campbell C. E., Felix K., Cabeen R. P., Belcher B. R., & Herting M. M. (2020). Prefrontal cortex and amygdala Subregion morphology are associated with obesity and dietary self-control in children and adolescents. Frontiers in Human Neuroscience, 14, Article 563415. [34] Kroemer, N. B., & Small, D. M. (2016). Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology and Behavior, 162, 37-45. [35] Laurent J. S., Watts R., Adise S., Allgaier N., Chaarani B., Garavan H., & Mackey S. (2020). Associations among body mass index, cortical thickness, and executive function in children. JAMA Pediatrics, 174(2), 170-177. [36] Levitan R. D., Rivera J., Silveira P. P., Steiner M., Gaudreau H., Hamilton J., & Meaney M. J. (2015). Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: An early model of compromised inhibitory control and obesity. International Journal of Obesity, 39(4), 614-619. [37] Lindberg L., Hagman E., Danielsson P., Marcus C., & Persson M. (2020). Anxiety and depression in children and adolescents with obesity: A nationwide study in Sweden. BMC Medicine, 18(1), Article 30. [38] Llewellyn, C., & Wardle, J. (2015). Behavioral susceptibility to obesity: Gene-environment interplay in the development of weight. Physiology and Behavior, 152, 494-501. [39] Loos, R. J. F., & Yeo, G. S. H. (2014). The bigger picture of FTO-the first GWAS-identified obesity gene. Nature Reviews Endocrinology, 10(1), 51-61. [40] Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews Genetics, 23(2), 120-133. [41] Lowe C. J., Morton J. B., & Reichelt A. C. (2020). Adolescent obesity and dietary decision making-a brain-health perspective. Lancet Child and Adolescent Health, 4(5), 388-396. [42] Lowe C. J., Reichelt A. C., & Hall P. A. (2019). The prefrontal cortex and obesity: A health neuroscience perspective. Trends in Cognitive Sciences, 23(4), 349-361. [43] Lugo-Candelas C., Pang Y. J., Lee S., Cha J., Hong S. S. E., Ranzenhofer L., & Mayer L. (2020). Differences in brain structure and function in children with the FTO obesity-risk allele. Obesity Science and Practice, 6(4), 409-424. [44] Moreno-Lopez L., Contreras-Rodriguez O., Soriano-Mas C., Stamatakis E. A., & Verdejo-Garcia A. (2016). Disrupted functional connectivity in adolescent obesity. NeuroImage: Clinical, 12, 262-268. [45] Murray S. B., Alba C., Duval C. J., Nagata J. M., Cabeen R. P., Lee D. J., & Jann K. (2023). Aberrant functional connectivity between reward and inhibitory control networks in pre-adolescent binge eating disorder. Psychological Medicine, 53(9), 3869-3878. [46] Nakamura Y., Ozawa S., & Koike S. (2020). Caudate functional connectivity associated with weight change in adolescents. Frontiers in Human Neuroscience, 14, Article 587763. [47] Pauli-Pott U., Albayrak Ö., Hebebrand J., & Pott W. (2010). Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: Dependence on age and inhibitory control component. Child Neuropsychology, 16(6), 592-603. [48] Paus T., Zijdenbos A., Worsley K., Collins D. L., Blumenthal J., Giedd J., Rapoport J. N., & Evans A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908-1911. [49] Pearce A. L., Mackey E., Cherry J. B. C., Olson A., You X. Z., Magge S. N., & Vaidya C. J. (2017). Effect of adolescent bariatric surgery on the brain and cognition: A pilot study. Obesity, 25(11), 1852-1860. [50] Perlaki G., Molnar D., Smeets P. A. M., Ahrens W., Wolters M., Eiben G., & Orsi G. (2018). Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS ONE, 13(10), Article e0205331. [51] Pujol J., Blanco-Hinojo L., Martínez-Vilavella G., Deus J., Pérez-Sola V., & Sunyer J. (2021). Dysfunctional brain reward system in child obesity. Cerebral Cortex, 31(9), 4376-4385. [52] Rapuano K. M., Zieselman A. L., Kelley W. M., Sargent J. D., Heatherton T. F., & Gilbert-Diamond D. (2017). Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 160-165. [53] Reichelt, A. C. (2016). Adolescent maturational transitions in the prefrontal cortex and dopamine signaling as a risk factor for the development of obesity and high fat/high sugar diet induced cognitive deficits. Frontiers in Behavioral Neuroscience, 10, Article 189. [54] Ronan L., Alexander-Bloch A., & Fletcher P. C. (2020). Childhood obesity, cortical structure, and executive function in healthy children. Cerebral Cortex, 30(4), 2519-2528. [55] Sadler J. R., Thapaliya G., Ranganath K., Gabay A., Chen L. Y., Smith K. R., & Carnell S. (2023). Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatric Obesity, 18(8), Article e13042. [56] Salama M., Balagopal B., Fennoy I., & Kumar S. (2023). Childhood obesity, diabetes. And cardiovascular disease risk. Journal of Clinical Endocrinology and Metabolism, 108(12), 3051-3066. [57] Shao X. Y., Tan L. H., & He L. F. (2022). Physical activity and exercise alter cognitive abilities, and brain structure and activity in obese children. Frontiers in Neuroscience, 16, Article 1019129. [58] Shapiro A. L. B., Moore B. F., Sutton B., Wilkening G., Stence N., Dabelea D., & Tregellas J. R. (2020). In utero exposure to maternal overweight or obesity is associated with altered offspring brain function in middle childhood. Obesity, 28(9), 1718-1725. [59] Shulman E. P., Smith A. R., Silva K., Icenogle G., Duell N., Chein J., & Steinberg L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103-117. [60] Simmonds M., Llewellyn A., Owen C. G., & Woolacott N. (2016). Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obesity Reviews, 17(2), 95-107. [61] Smith K. E., Luo S., & Mason T. B. (2021). A systematic review of neural correlates of dysregulated eating associated with obesity risk in youth. Neuroscience and Biobehavioral Reviews, 124, 245-266. [62] Somerville L. H., Jones R. M., & Casey B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72(1), 124-133. [63] Syan S. K., McIntyre-Wood C., Minuzzi L., Hall G., McCabe R. E., & MacKillop J. (2021). Dysregulated resting state functional connectivity and obesity: A systematic review. Neuroscience and Biobehavioral Reviews, 131, 270-292. [64] Tan Z. X., Hu Y., Ji G., Li G. Y., Ding Y. Y., Zhang W. C., & Zhang Y. (2022). Alterations in functional and structural connectivity of basal ganglia network in patients with obesity. Brain Topography, 35(4), 453-463. [65] Tejavibulya L., Rolison M., Gao S. Y., Liang Q. H., Peterson H., Dadashkarimi J., & Scheinost D. (2022). Predicting the future of neuroimaging predictive models in mental health. Molecular Psychiatry, 27(8), 3129-3137. [66] Tiego J., Testa R., Bellgrove M. A., Pantelis C., & Whittle S. (2018). A hierarchical model of inhibitory control. Frontiers in Psychology, 9, Article 1339. [67] Wang J. J., Dong D. B., Liu Y., Yang Y. K., Chen X. M., He Q. H., & Chen H. (2023). Multivariate resting-state functional connectomes predict and characterize obesity phenotypes. Cerebral Cortex, 33(13), 8368-8381. [68] Wang Y. L., Dong D. B., Chen X. M., Gao X., Liu Y., Xiao M. Y., & Chen H. (2023). Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children. Cerebral Cortex, 33(8), 4794-4805. [69] Zhang P., Liu Y., Yu F. X., Wu G. W., Li M. Y., Wang Z., & Wang Z. C. (2021). Hierarchical integrated processing of reward-related regions in obese males: A graph-theoretical-based study. Appetite, 159, Article 105055. |
[1] | Li Sijin, Tang Yuyao, Zhang Dandan. Neural Mechanism of Monetary and Social Reward Processing in Healthy and Depressed Populations [J]. Journal of Psychological Science, 2024, 47(6): 1317-1327. |
[2] | Liu Xu, Liu Yuxiao, Chen Qian, Cao Min, Peng Ji, Zhou Zongkui. Bidirectional Associations Between Friendship Quality, Subjective Well-Being and Loneliness Among Children: A Longitudinal Study [J]. Journal of Psychological Science, 2024, 47(4): 819-828. |
[3] | Xu Xiaohui, Xu Min, Zhang Yaohua, Zhang Minghao. Development of Children's Procedural Fairness and Its Internal Mechanisms [J]. Journal of Psychological Science, 2024, 47(4): 829-837. |
[4] | Song Yiqi, Zhu Chucheng, Liang Dandan. Spatial Iconicity in Lexical Semantic Processing of Mandarin-Speaking Children with High Functioning Autism: Compared with Perceptual Processing [J]. Journal of Psychological Science, 2024, 47(3): 554-561. |
[5] | Ren Zhi, Sun Fanhui, Yuan Yang, Song Jiarun, Wang Lijuan. The Event-Based Prospective Memory Impairment in Children with ASD Aged 3-6: The Role of Executive Function [J]. Journal of Psychological Science, 2024, 47(3): 570-580. |
[6] | Si Shuangqing, Zhou Sihong, Yuan Jiajin, Yang Qian. Influencing Factors in the Allocation of Cognitive Control: Rewards and Costs [J]. Journal of Psychological Science, 2024, 47(2): 258-266. |
[7] | Shi Zifu, Chen Xiaohao. The Influence of Nested Sets Modeling Ability and Numerical Representation on Children's Bayesian Reasoning [J]. Journal of Psychological Science, 2024, 47(2): 274-280. |
[8] | Fan Wei, Yang Ying, Dong Yanqiu, Zhang Wenjie. The Effects of Competitive Situations and Reward Motivation on Self-Deception: Evidence From Eye Movements [J]. Journal of Psychological Science, 2024, 47(2): 411-423. |
[9] | Zhou Xing, Hao Shuang, Zhao Lili, He Weiqi. Effects of Reward Learning on Attention Capture of Task-Irrelevant Emotional Faces [J]. Journal of Psychological Science, 2023, 46(6): 1298-1304. |
[10] | Xin Cong, Liu Guoxiong, Cheng Li. Children’s Prospective Memory:The Role of Executive Functions [J]. Journal of Psychological Science, 2023, 46(6): 1360-1367. |
[11] | Wu Yan, Chen Qiyang, Hu Shiqian. Effects of World Knowledge and Word Association During Chinese Sentence Processing among Children Aged 10~12: An Eye-Movement Study [J]. Journal of Psychological Science, 2023, 46(5): 1074-1080. |
[12] | Fang Haoyu, Zhu Xiaoliang, Zhao Xin. Effects of Sleep Quality on Academic Performance of Children Aged 10 to 12 Through the Mediating Role of Updating Ability [J]. Journal of Psychological Science, 2023, 46(5): 1090-1097. |
[13] | Ba Junxiu, Wang Lijun. Sensitivity of Depression-Inclined Individuals to Social and Monetary Rewards: The Role of Reward Probability [J]. Journal of Psychological Science, 2023, 46(5): 1220-1227. |
[14] | Gao Bin, Jia Yingfang, Jiang Yunpeng, Wu Jie. The Influence of Reward Motivation on Automatic Reaction Inhibition [J]. Journal of Psychological Science, 2023, 46(4): 795-801. |
[15] | Li Feifei, Fang Haiyan, Chen He, Liu Baogen. Implicit Learning Hypothesis among Children with Autism:Evidence from Artificial Grammar Learning [J]. Journal of Psychological Science, 2023, 46(4): 809-816. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 549
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||