Psychological Science ›› 2012, Vol. 35 ›› Issue (1): 16-23.
Previous Articles Next Articles
1,Zhu DANG2, 3
Received:
2010-08-10
Revised:
2011-05-13
Online:
2012-01-20
Published:
2012-01-20
周临1,邓铸2,陈庆荣3
通讯作者:
周临
Zhu DANG. Antisaccades and Its Experimental Paradigm, Mechanisms and Influence Factors[J]. Psychological Science, 2012, 35(1): 16-23.
周临 邓铸 陈庆荣. 反向眼跳的实验范式、机制及影响因素[J]. 心理科学, 2012, 35(1): 16-23.
陈庆荣, 谭顶良, 邓铸, 周临, 张晓丽. (2009). 眼跳的研究范式及其主要认知功能. 心理科学进展, 17, 1197-1210. 陈玉英, 隋光远, 瞿彬. (2008). 自主控制眼跳: 实验范式、神经机制和应用. 心理科学进展, 16, 154-162. 任延涛, 韩玉昌, 隋雪. (2006). 视觉搜索过程中的眼跳及其机制. 心理科学进展, 14, 340-345. 杨永胜, 丁锦红. (2008). 系列眼跳的产生及其心理学意义. 心理科学进展, 16, 240-249. Bagary,M., S.,Hutton, S. B., Symms,M.R., Barker,G. J.,Mutsatsa, S.H., Barnes, T. R., et al. (2004). Structural neural networks subserving oculomotor function in first-episode schizophrenia. Biological Psychiatry, 56, 620-627. Biscaldi, M., Fischer, B., & Stuhr, V. (1996). Human express-saccade makers are impaired at suppressing visually-evoked saccades. J Neurophysiol, 76, 199–214. Blaukopf, C. L., & DiGirolamo, G. J. (2006). Differential effects of reward and punishment on conscious and unconscious eye movements. Experimental Brain Research, 174, 786-792. Butler, K. M., & Zacks, R. T. (2006). Age deficits in the control of prepotent responses: evidence for an inhibitory decline. Psychology and Aging, 21, 638-642. Chan, F., Armstrong, I. T., & Pari, G. (2005). Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia, 43, 784-796. Crawford, T. J., Bennett, D., Lekwuwa, G., Shaunak, S., & Deakin, J. F. (2002). Cognition and the inhibitory control of saccades in schizophrenia and Parkinson’s disease. Progress in Brain research, 140, 449-466. Crawford, T. J., Higham, S., Renvoize, T., Patel, J., Dale, M., Suriya, A., et al. (2005). Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biological Psychiatry, 57, 1052-1060. Dafoe, J., Armstrong, I., & Munoz, D. (2007). The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Experimental Brain Research, 179, 563-570. Dorris, M. C., & Munoz, D. P. (1995). A neural correlate for the gap effect on saccadic reaction times in monkey. Journal of Neurophysiology, 73, 2558-2562. Edelman, J. A., & Keller, E. L. (1996). Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades. Journal of Neurophysiology, 76, 908-926. Eenshuistra, R. M., Ridderinkhof, K. R., & van der Molen, M. W. (2004). Age-related changes in antisaccade task performance: Inhibitory control or working memory engagement? Brain and Cognition, 56, 177-188. Ettinger, U., Antonova, E., Crawford, T. J., Mitterschiffthaler, M. T., Goswani, S., Sharma, T., et al. (2005a). Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans. Neuroimage, 24, 487-494. Evdokimidis, I., Smyrnis, N., Constantinidis, T. S., Stefanis, N. C., Avramopoulos, D., Paximadis, C., Thelcritis, C., Efstratiadis, C., Kastrinakis, G., Stefanis, C. N. (2002). The antisaccade TASK in a sample of 2006 young males. I. Normal population characteristics. Experimental Brain Research, 147, 45-52 Evdokimidis, I., Tsekou, H., & Smyrnis, H. (2006). The mirror antisaccade task: direction–amplitude interaction and spatial accuracy characteristics. Experimental Brain Research, 174, 304-311 Everling, S., & Fischer, B. (1998). The antisaccade: A review of basic research and clinical studies. Neuropsychologia, 36, 885-899. Everling, S., Spantekow, A., Krappmann, P., & Flohr, H. (1998). Eventrelated potentials associated with correct and incorrect responses in a cued antisaccade task. Experimental Brain Research, 118, 27-34. Fischer, B., Biscaldi, M., & Gezeck, S. (1997). On the development of voluntary and reflexive components in human saccade generation. Brain Research, 754, 285-297. Fischer, B., & Boch, R. (1983). Saccadic eye movements after extremely short reaction times in the monkey. Brain Research, 260, 21-26. Fischer, B., & Weber, H. (1993). Express saccades and visual attention. Behavioral & Brain Sciences, 16, 553-567. Fischer, B., & Weber, H. (1997). Effects of stimulus conditions on the performance of antisaccades in man. Experimental Brain Research, 116, 191-200. Forbes, K., & Klein, R. M. (1996). The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. Journal of Cognitive Neuroscience, 8, 344-352. Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed antisaccade task. Nature, 365, 753-756. Goldring, J., & Fischer, B. (1997). Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks. Experimental Brain Research, 97, 88-103. Gooding, D. C., & Tallent, K. A. (2001). The association between antisaccade task and working memory task performance in schizophrenia and bipolar disorder. Journal of Nervous and Mental Disease, 189, 8-16. Guitton, D., Buchtel, H. A. & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal directed saccades. Experimental Brain Research, 58, 455-472. Hallett, P. E. (1978). Primary and secondary saccades to goals defined byinstructions. Vision Research, 18, 1279-1296. Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302-313. Hutton, S. B., Huddy, V., Barnes, T. R., Robbins, T.W., Crawford, T. J., Kennard, C., et al. (2004). The relationship between antisaccades, smooth pursuit, and executive dysfunction in first-episode schizophrenia. Biological Psychiatry, 56, 553-559. Kalesnykas, R. P., & Hallett, P. E. (1994). Retinal eccentricity and the latency of eye saccades. Vision Research, 94, 517-531. Klein, C., & Foerster, F. (2001). Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. Psychophysiology, 38, 179-189. Koval, M., Ford, K., & Everling, S. (2004). Effect of stimulus probability on anti-saccade error rates. Experimental Brain Research, 159, 268-272. Krappmann, P., Everling, S., & Flohr, H. (1998). Accuracy of visually and memory-guided antisaccades in man. Vision Research, 38, 2979-2985. Kristjánsson, á. (2007). Saccade landing point selection and the competition account of pro- and antisaccade generation: The involvement of visual attention – A review. Scandinavian Journal of Psychology, 48, 97-113. Kristjánsson, á., Chen, Y., & Nakayama, K. (2001). Less attention is more in the preparation of antisaccades, but not prosaccades. Nature Neuroscience, 4, 1037-1042. Kristjánsson, á., Vandenbroucke, M. W., Driver, J. (2004). When pros become cons for anti-versus prosaccades: Factors with opposite or common effects on different saccade types. Experimental Brain Research, 155, 231-244. Massen, C. (2004). Parallel programming of exogenous and endogenous components in the antisaccade task. Quarterly Journal of Experimental Psychology A, 57, 475-498. Matsuda, T., Matsuura, M., Ohkubo, T., Ohkubo, H., Matsushima, E., Inoue, K., Taira, M. & Kojima, T. (2004). Functional MRI mapping of brain activation during visually guided saccades and antisaccades: Cortical and subcortical networks. Psychiatry Research, 131, 147-155. Medendorp, W. P., Goltz, H. C., & Vilis, T. (2005). Remapping the remembered target location for anti-saccades in human posterior parietal cortex. Journal of Neurophysiology, 94, 734-740. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. Mitchell, J. P., Macrae, C. N., & Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14, 95-103. Mokler, A., & Fischer, B. (1999). The recognition and correction of involuntary prosaccades in an antisaccade task. Experimental Brain Research, 125, 511-516. Müri, R. M., Heid, O., Nirkko, A. C., Ozdoba, C., Felblinger, J., Schroth, G., et al. (1998). Functional organisation of saccades and antisaccades in the frontal lobe in humans: A study with echo planar functional magnetic resonance imaging. Journal of Neurology, Neurosurgery and Psychiatry, 65, 374-377. Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218-228. Nieuwenhuis, S., Broerse, A., Nielen, M. M. A., & de Jong, R. (2004). A goal activation approach to the study of executive function: An application to antisaccade tasks. Brain and Cognition, 56, 198-214. O’Driscoll, G. A., Alpert, N.M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedings of the National Academy of Sciences, USA, 92, 925-929. Olk, B., & Kingstone, A. (2003). Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport, 14, 151-155. Olincy, A., Ross, R. G., Youngd, D. A., & Freedman, R. (1997). Age diminishes performance on an antisaccade eye movement task. Neurobiology of Aging, 18, 483-489. Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2009). Age-related trends in saccade characteristics among the elderly. Neurobiology of Aging, in press. Pierrot-Deseilligny, C., Ploner, C. J., Müri, R. M., Gaymard, B., & Rivaud-Pechoux, S. (2002). Effects of cortical lesions on saccadic eye movements in humans. Annals of the New York Academy of Science, 956, 216-229. Pratt, J., Dodd, M., & Welsh, T. (2006). Growing older does not always mean moving slower examining aging and the saccadic motor system. Journal of Motor Behavior, 38, 373-382. Richards, J. E. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40, 878-894. Reuter, B., & Kathmann, N. (2004). Using saccade tasks as a tool to analyze executive dysfunctions in schizophrenia. Acta Psychologica, 115, 255-269. Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task. Journal of Experimental Psychology: General, 123, 374-393. Rommelse, N., Stigchel, S., & Sergeant, J. (2008). A review on eye movement studies in childhood and adolescent psychiatry. Brain and Cognition, 68, 391-414. Smyrnis, N., Evdokimidis, I., Stefanis, N. C., Constantinidis, T. S., Avramopoulos, D., Theleritis, C., et al. (2002). The antisaccade task in a sample of 2006 young males—II. Effects of task parameters. Experimental Brain Research, 147, 53-63. Sweeney, J. A.,Mintun, M. A., Kwee, S.,Wiseman,M. B., Brown, D. L., Rosenberg, D. R., et al. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75, 454-468. Taylor, A. J., & Hutton, S. B. (2009). The effects of task instructions on pro and antisaccades performance. Experimental Brain Research, 195, 5-14. Tatler, B. W., & Hutton, S. B. (2007). Trial by trial effects in the antisaccade task. Experimental Brain Research, 179, 387-396. Unsworth, N., Schrock, J., & Engle, R. W. (2004). Working Memory Capacity and the Antisaccade Task: Individual Differences in Voluntary Saccade Control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 1302-1321. Weber, H., Aiple, F., Fischer, B., & Latanov, A. (1992). Dead zone forexpress saccades. Experimental Brain Research, 89, 214-222. Zhang, M., & Barash, S. (2000). Neuronal switching of sensorimotor transformations for antisaccades. Nature, 408, 971-975. |
[1] | Li Ying, Li Lin, Pan Jiabing, Lu Xiaoxiao, Wang Yue. The Effect of Executive Control Training on Language Control of Chinese-English Bilinguals with Different Working Memory Updating Ability [J]. Journal of Psychological Science, 2024, 47(5): 1088-1095. |
[2] | Xie Weiye, Liu Yucheng, Cai Lixue, Han Linzhu, Liu Zhiya. The Effects of Surface Similarity and Presentation Mode on Relational Analogical Reasoning: The Match Effect [J]. Journal of Psychological Science, 2024, 47(4): 770-779. |
[3] | Yuan Yichen, Yan Han, He Xiang, Yue Zhenzhu. The Modulation of Working Memory Load on Attention Capture by Audiovisual Stimuli [J]. Journal of Psychological Science, 2024, 47(4): 795-802. |
[4] | Zhou Wenbin, Nan Wenya, Fu Yunfa. EEG Neurofeedback for Working Memory Enhancement: A Literature Review [J]. Journal of Psychological Science, 2024, 47(3): 514-521. |
[5] | Shi Xinguang, Li Xiao, Feng Chengzhi. The Characteristics and Neural Mechanisms of Working Memory of College Students with Different Neural Types [J]. Journal of Psychological Science, 2024, 47(1): 36-43. |
[6] | Yang Ting, Zhao Xin, He Xiangchun, Li Kaiyue, Cao Wenjing. Implementation of Strategy on the Transfer Effect of Working Memory Training [J]. Journal of Psychological Science, 2023, 46(4): 841-847. |
[7] | Kong Fanchang, Xia Yujuan, Liu Zhaojun, Wang Meiru, Li Xiaoyao. Media Multitasking Affects Cognitive Control: Evidences for Scattered Attention Hypothesis [J]. Journal of Psychological Science, 2023, 46(4): 865-872. |
[8] | Peng Yudi, Xie Tian, Ma Ning. Effect of Daily rhythm on Cognitive Functions [J]. Journal of Psychological Science, 2023, 46(2): 282-290. |
[9] | . The Influence of Social Exclusion on The Visual Working Memory Capacity [J]. Journal of Psychological Science, 2023, 46(1): 11-18. |
[10] | . The Influence of Task Structural Similarity on Transfer Effect of Working Memory Training [J]. Journal of Psychological Science, 2022, 45(6): 1337-1343. |
[11] | Rong-Juan ZHU. The cognitive factors of auditory alarms deafness [J]. Journal of Psychological Science, 2022, 45(5): 1045-1052. |
[12] | . The Effect of Attention and Working Memory on the Interleaving Effect [J]. Journal of Psychological Science, 2022, 45(1): 24-32. |
[13] | Ying Chen xia wu Xian JianWang. The effects of cognitive control subcomponents and objective risk on trust behavior [J]. Journal of Psychological Science, 2022, 45(1): 187-194. |
[14] | . The Influence of Icon Semantic Distance on Working Memory of Radar Interface Information under Different Time Pressures [J]. Journal of Psychological Science, 2021, 44(5): 1073-1080. |
[15] | Long-Nong Dai. The Explanation of Spatial-Numerical Associations: Mental Number Line or Working Memory Account [J]. Journal of Psychological Science, 2021, 44(4): 793-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||